Muchos de los problemas de los seminarios fueron sacados de trabajos científicos originales (papers). En esta página mostramos algunos de esos papers y aquellos de especial interés por estar relacionados con los temas tratados en los distintos módulos. Aquellos interesados en algún trabajo comunicarse con Gustavo Parisi.

Los trabajos marcados con ** son de especial interés en la cursada.

Links relacionados con ésta página: Papers que hicieron historia en Bioquímica.

 

Módulo I

Interacciones débiles

Teaching noncovalent interactions in the Biochemistry curriculum through molecular visualization: The search for pi interactions. Cox, J. Journal of Chemical Education. 77, 11:1424-1428. 2000.

Electrostatics in protein binding and function. Sinha, N and Smith-Gill, S. Current Protein and Peptide Science, 3:601-614. 2002.

Macromolecular crowding: an important but neglected aspect of the intracellular environment. Ellis, R. Current Opinion in Structural Biology. 11:114-119. 2001.

The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. Minton, A. The Journal of Biological Chemistry. 276:10577-10580. 2001

**Macromolecular crowding: obvious but underappreciated. Ellis, R. Trends in Biochemical Sciences. 26:597-603. 2001

How do organic chemistry students understand and apply hydrogen bonding? Herderleiter, J. Smart, R., Anderson, J and Elian, O. Journal of Chemical Education. 78:1126-1130. 2001

Ion pairs and the thermotolerance of proteins from heperthermophiles: a "traffic rule" for hot roads. Karshikoff, A and Ladenstein, R. Trends in Biochemical Sciences. 26:550-556. 200.

Structure and binding of unconjugated bilirubin: relevance for physiological and pathophysiological function. Ostrow, J. , Mukerjee, P and Tiribelli, C. Journal of Lipid Research. 35:1715-. 1994.

Propiedades Fisicoquímicas de aminoácidos y péptidos

**A graphical approach to determine the isoelectric point and charge of small peptides from ph 0 to 14. D'Andrea, G and Nicolantonio, G. Journal of Chemical Education 79:972-974, 2002.

Estructura de Proteínas

**Conformational diversity and protein evolution-a 60-year-old hypothesis revisited. James, L and Tawfik, D. Trends in Biochemical Sciences. 28: 361-368. 2003.

The structure of the potassium channel: molecular basis of K conduction and selectivity. Doyle, D et al. Science, 280:69-77. 1998.

**X-ray structure analysis and crystallographic refinement of Lumazine Synthase from the Hyperthremophile Aquifex aeolicus at 1.6 A resolution:Determination of thermostability revealed from structural comparisons. Zhang, X, Meining,W., Fischer, M., Bacher, A and Ladenstein, R. Journal of Molecular Biology, 306:1099-1114. 2001

**Intrinsically unstructured proteins. Tompa, P. Trends in Biochemical Sciences. 27:527-. 2002

Is there a unifying mechanism for protein folding? Daggett, V and Fersht, A.  Trends in Biochemical Sciences. 28:18-25, 2003.

Circular proteins - no end in sight. Trabi, Manuela and Craik, D. Trends in Biochemical Sciences. 27, 3, 132-138. 2002

Módulo II

Cinética Enzimática

Thermodynamic and extrathermodynamic requirements of enzyme catalysis. R. Wolfenden. Biophysical Chemistry 105: 559-572. 2003

Enzymes catalysis: removing chemically "essential" residues by site-directed mutagenesis. A. Trend in Biochemical Scienceies.26:497-503.2001.

By chance , or by design? Ball, P. Nature.  431:396-397. 2004.

Inhibidores

**Understanding enzyme inhibition. R Ochs. Journal of Chemical Eduaction 77:1453-1456. 2000

The metalloproteolytic activity of the anthrax lethal factor is substrate-inhibited. F. Tonello, P, Ascenzi, and C. Montecucco. The Journal of Biologycal Chemistry. 278: 40075-40078. 2003.

Enzymatic transition states and transition state analog design. V Schramm. Annu. Rev. Biochem. 67: 693-720. 1998.

Efecto del pH y de la Temperatura en la cinética enzimática

**The temperature optima of enzymes: a new perspective on an old phenomenon. R, Daniel, M. Danson, R. Eisenthal. Trends in Biochemical Sciences. 26:223-225. 2001

**How enzymes adapt: lessons from directed evolution. F. Arnold, P. Wintrode, K. Miyazaki and A. Gershenson. Trends in Biochemical Sciences. 26: 100-106. 2001.

Approaches for deciphering the structural basis of low temperature enzyme activity. P. Sheridan, N. Panasik, J. Coombs, and J. Brenchley. Biochimica et Biophysica Acta 1543:417-433. 2000.

Psychrophilic enzymes: a thermodynamic challenge. C. Gerday, M. Aittaleb, J, Arpigny, E. Baise, J, Chessa, G. Garsoux, I. Petrescu, G, Feller. Biochimica et Biophysica Acta 1342: 119-131. 1997.

Alosterismo

**Proteomics and models for enzyme cooperativity. Koshland, D and Hamadani, K. The Journal of Biological Chemistry. 277:46841-46844. 2002.

Is there and Answer? Ascenzi, P and Polticelli, F. IUBMB Life, 54: 223-224. 2002.

Multiple conformational changes in enzyme catalysis. Hammes, G. Biochemistry. 41: 8221-8228. 2002.

Direct structural evidence for a concerted allosteric transition in Escherichia coli aspartate transcarbamoylase. Macol, C, Tsuruta, H, Stec, B and Kantrowitz, E. Nature in Structural Biology. 8: 423-427. 2001.

**Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Kamata, K, Mitsuya, M, Nishimura, T, Riki, J and Nagata Y. Structure, 12: 429-438. 2004.

**Is allostery an intrinsic property of al dynamic proteins? Gunasekaran, K, Ma, B, Nussinov, R. Proteins: Strucutre, Function and Bioinformatics 57:433-443. 2004.

 

Estructura y composición de ácidos nucleicos

** Número especial de Nature. The double helix-50 years. Nature 23 January 2003.

 

tical-align: bottom; white-space: nowrap; border-left-style: none; border-left-width: medium; border-right: .5pt solid windowtext; border-top-style: none; border-top-width: medium; border-bottom: .5pt solid windowtext; padding-left: 1px; padding-right: 1px; padding-top: 1px" x:num="6.1333333333333337" width="40">