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ABSTRACT

Motivation: Accurate detection of positive Darwinian selection can
provide important insights to researchers investigating the evolu-
tion of pathogens. However, many pathogens (particularly viruses)
undergo frequent recombination and the phylogenetic methods com-
monly applied to detect positive selection have been shown to give
misleading results when applied to recombining sequences. We pro-
pose a method that makes maximum likelihood inference of positive
selection robust to the presence of recombination. This is achieved by
allowing tree topologies and branch lengths to change across detec-
ted recombination breakpoints. Further improvements are obtained
by allowing synonymous substitution rates to vary across sites.
Results: Using simulation we show that, even for extreme cases
where recombination causes standard methods to reach false positive
rates above 90%, the proposed method decreases the false positive
rate to acceptable levels while retaining high power. We applied the
method to two HIV-1 data sets for which we have previously found that
inference of positive selection is invalid due to high rates of recombi-
nation. In one of these (env gene) we still detected positive selection
using the proposed method, while in the other (gag gene) we found
no significant evidence of positive selection.

Availability: A HyPhy batch language implementation of the pro-
posed methods and the HIV-1 data sets analysed are available at
http://www.chio.uct.ac.za/pubupport/bioinf06 The HyPhy package is
available at http://www.hyphy.org and it is planned that the proposed
methods will be included in the next distribution. RDP2 is available at
http://darwin.uvigo.es/rdp/rdp.html

Contact: konrad@chio.uct.ac.za, cathal@science.uct.ac.za

1 INTRODUCTION

The standard phylogenetic approach to inferring positiaevi-
nian selection in protein-coding sequences is based ondtienc

(false positive) error rates as high as 90%. In a recent tsidyeff-
ler and Seoighe, submitted), we quantified the percentade s
positive inferences as a function of recombination ratedsmon-
strated that inferred positive selection on two example Hidta sets
is invalidated by the presence of recombination.

Recombination can contribute to false inference of pasieiec-
tion by causing the branch lengths (Figure 1(a)) and treeltojes
(Figure 1(b)) to differ between sites. In order to devise bush
method of inferring positive selection we investigated tmpact
of allowing tree topology and branch length parameters tmgk
across recombination breakpoints. In a real analysis wieipate
that a subset of recombination breakpoints might be untitetn
order to improve the performance of our method in the preseha
subset of undetected recombination breakpoints we indladeria-
ble synonymous substitution rate in our models, which aloe
total tree length to vary from site to site. Sequences calveumder
a variable synonymous substitution rate due to mutatica vatia-
tion or due to site-specific selection acting on synonymashges,
but synonymous rate variation could also be detected asult ofs
recombination events that alter branch lengths. Incotpgrayn-
onymous rate variation in the model can therefore accourgdime
of the misestimated branch lengths that result from recoatlzin
events that alter branch lengths but not tree topology. hegd, we
expect these recombination events to be more difficult teadé¢han
those that cause a substantial change in tree topology. &liested
the performance of the method by simulation and appliediitte-
stigate whether the HIV data sets mentioned above can beedfe
to be evolving under positive selection when recombinagdaken
into account.

2 MATERIALS AND METHODS

We generated a number of data sets using the Codonrecsimapragrit-

models first proposed by Muse and Gaut (1994) and Goldman angn .by Rasmus NieI;en (Anisimoeaal., 2903) thgt siml_JIates recombined
Yang (1994), which have since been developed into a set afstob coding sequence alignments. It does this by simulating uadehyloge-

methods that detect positive selection while allowing felestive
pressure to vary across sites (Nielsen and Yang, 1998; #aalg,

netic model of evolution using the discrete model (M3) oé4i-site rate
variation proposed by Yang al. (2000), but with the evolution taking place
along genealogies simulated under the coalescent modetedbombination

2000; Wonget al., 2004). These methods, however, assume that theyy4son, 1983). This means that sites that have a recorfgiriateakpoint

phylogenetic tree topology and branch lengths are consiznoss
all sites in the sequence — an assumption which is invalidwthe

sequences have been affected by recombination. Indeex iiden
shown (Anisimovaet al., 2003; Shrineret al., 2003) that the pre-
sence of recombination can cause these methods to fail yyithlt

*to whom correspondence should be addressed

between them do not evolve along the same phylogenetic Baon and
Etheridge (2004) have shown that selection has little efiecgenealogies,
which justifies neglecting selection when simulating géogias under the
coalescent model with recombination.

We performed two suites of simulation experiments, onegu&drtaxon
and one using 30-taxon data sets (Table 1). In each suitemnéeaged neu-
trally evolving data sets (i.ew = 1, mimicking pseudogene evolution)
to estimate false positive rates and data sets evolving sitighto-site rate
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@ (b)

Fig. 1. Recombination graphs (Hudson, 1983) (above) and correléppn
trees (below) illustrating (a) a recombination event thaarges the tree
length but not the topology and (b) a recombination everitdthanges both
the tree length and the topology. In the recombination ggafie letter C
indicates coalescent events while the letter R indicatsmeination events.

Table 1. Simulation parameters used to create data sets.

Data set Nroftaxa p®  6°®  Selectiof
Small, neutral 10 0.05 3.6 no
Small, positive selection 10 0.05 3.6 yes
Small, neutral (no recomb.) 10 0 3.6 no
Small, pos. sel. (no recomb.) 10 0 3.6 yes
Large, neutral 30 0.01 0.36 no
Large, positive selection 30 0.01 0.36 yes
Large, neutral (no recomb.) 30 0 0.36 no
Large, pos. sel. (no recomb.) 30 0 0.36 yes

“p: population-scaled recombination rate, = 4N.r. “6: population-scaled
mutation ratef) = 4N, pu. “Selection: The discrete model of Yaegal. (2000)
was used; “no” indicates that = 1 at all sites, while “yes” indicates; = 0.08,
p1 = 0.659, wy = 0.61, po = 0.206, wg = 2.55, ps = 0.135, where
w values are the non-synonymous/synonymous rate ratiogpavalues are the
proportion of sites for which the correspondiagvalues apply.

variation and positive selection (using the parameteesiiafl by Anisimova
et al. (2003) on their hepatitis D antigen data set under the 3-cowmnmt
discrete model (Yangt al., 2000)) to estimate power. Each simulated ali-
gnment was 500 codons long, and each data set consisted offl@ates.
The transition/transversion rate ratie) (was set td2 and the codon equili-
brium frequencies to those empirically estimated for thpaditis D antigen
data set. We chose mutation and recombination rate paremiesg produ-
ced high false positive rates when using the standard mégesdbelow) to
infer positive selection on the neutral data sets. For th&a86n data sets the
population-scaled recombination ragg was0.01 and the population-scaled
mutation rate ) was0.36, resulting in an average af3.2 recombination
events in the entire genealogy and an expected numbér8fmutations
per codon. For the 10-taxon data spte/as0.05 and 6 was 3.6, resulting

effect when used on unrecombined data, we also simulatedses with
exactly the same parameters but with zero recombinatien rat

Finally, we analysed the HIV-1 subtyped@v andgag data of our recent
study (Scheffler and Seoighe, submitted). These data setsicd0 taxa
each, with accession numbeXg118165-AY118166, AF286227, AY158533-
AY158535, AF411967, AF391234-AF391235 and AF391238 for the env
sequences1(53 codons in length) andY118165-AY118166, AF286227,
AY158533-AY158535, AF411967, AY162223-AY162224 and AF391254 for
thegag sequencess00 codons in length).

3 ALGORITHM

In this study we report results for four methods of detectiogi-
tive selection, using different combinations of the twoastgies
investigated:

Standard: This is the baseline method, which assumes that
topology, relative branch lengths and total tree length are
constant over all sites.

Synonymous rate variation: This method assumes that topo-
logy and relative branch length are constant over all shas,
allows total tree length to vary from site to site.

Partitioning: This method uses recombination breakpoints
(either detected or the actual simulated breakpoints)aleli
the alignment into partitions, each of which is assumed to
include no further recombination breakpoints. Topologja+
tive branch lengths and total tree length are forced to be
constant over all sites within a partition, but allowed toywa
between partitions.

Synonymous rate variation with partitioning: This method
combines the previous two methods: topology and relative
branch lengths are assumed constant over all sites withan-a p
tition, but allowed to vary between partitions. Total treadth

is allowed to vary from site to site irrespective of partitiiag.

We implemented the above methods using the batch language of
the HyPhy package (Kosakovsky Pogtdil., 2005).

3.1 Baseline (standard) method

We detected positive selection by comparing the discregarly
neutral” and “selection” models Mla and M2a of Woeg al.
(2004). We used the PAUP* program (Swofford, 2002) to edtma
the maximum likelihood topologies under the HKY85 model §eta
gawaet al., 1985). To save computation time, we did not estimate
the branch lengths separately for each model, but instezd the
branch lengths estimated under the MO (single rate) modahgY
et al., 2000). We report a sequence as being under positive selecti
at the 5% or 1% level if model M2a provides a significantly eett
fit than model M1a as measured by a likelihood ratio test with t
appropriate significance level.

3.2 Allowing synonymousratevariation

In the methods that model synonymous rate variation we added
a synonymous substitution rate parameter to the baselitieoche

in an average 0247.11 recombination events in the entire genealogy and We treat the synonymous rateas belonging to one of a num-

an expected number @f).18 mutations per codon (the very high values for
the 10-taxon data sets serve to illustrate that the methokisweell even in
extreme cases). To verify that the proposed method doesametdan adverse

ber of discrete rate classes, similar to the treatment ofmtire
synonymous/synonymous rate ratio so that the expression for
the instantaneous substitution rate from codda codon; at site
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h becomes: which had very high rates of recombination. The number oflbore
0, for difference at more than one position, points detected in the real data sets we examined was loaettle
mish), for synonymous transversion, maximum in both cases.
qxl) = {rmjsth), for synonymous transition, (1) Next, topologies and branch lengths are estimated as inabe b
' w®7;s(M) | for non-synonymous transversion, line method, except that a separate topology and set of branc
w™ ;5" for non-synonymous transition. lengths is used for each segment. The remaining model p&eesne

Here,  is the transition/transversion rate ratio angis the codon ~ however, are shared across all segments. In particularpate-
equilibrium frequency of codon. w™ and s denote, respec- MEters of models M1a and M2a describing the rate categorées a

tively, the non-synonymous/synonymous rate ratio andsymous ~ €Stimated only once for all segments.

rate at siteh. To allow fairer comparison with the unpartitioned methodg,
The synonymous rate is drawn from a discrete distributioth wi Present the resuits for the simulation experiments not éorlyhe

three rate categories (we obtained no noticeable differanesults  full unpartitioned sequence (Figure 2, top), but also fouapar-

when using four categories, data not shown), with ratedcaich tltloned' analysis qf the sites in the largest unre.comblrugh.mnts

that the average synonymous rate over all sitésTis distribution ~ Only (Figure 2, middie). This latter result provides a monect

is identical to that used for the parameter in the discrete model M3 comparison with the partitioned analysis (Figure 2, bojtarhich

of Yanget al. (2000), except that the latter is unscaled. Thus eacH/Ses the same subset of the codons.

site, in addition to belonging to one of thecategories, also belongs

to a synonymous rate category. This can also be viewed aglprgv

three different tree scales: the evolution at each site idathed as
following the same tree topology and relative branch lesgthut
the tree may be scaled differently for different sites. |—I—|

Note that our parameterisation of site-to-site rate vianeits dif-
ferent from that used by Kosakovsky Pond and Muse (2005)Hhwhi
uses the synonymous rate only for synonymous changes aed hen
is not a direct measure of total tree lengt”{ is absent from
the expression for the instantaneous rate of non-synongrtran-
sitions and transversions). Whereas Kosakovsky Pond argkMu
(2005) apply parametric models to the distribution of symaus
and of nonsynonymous rates, our parameterisation appkesame

parametric models to the distribution of synonymous ratesb af
selective strengths.

3.3 Detecting recombination breakpoints

For the methods using partitioning by detected recomimnatve
estimated the positions of recombination breakpoints gusire
non-parametric RDP (Martin and Rybicki, 2000), GENECONV
(Padidamet al., 1999), and MAXIMUM CHI SQUARED (May-
nard Smith, 1992) methods as implemented in RDP2 (Mattah.,
2005). See Poket al. (2006) for a description of how these methods
work. Default program settings were used throughout exiteita

Bonferroni corrected P-value cutoff of 0.01 was used to misé
the probability of falsely inferring recombination. All éskpoints
detected by any of the three methods were taken into comasider

3.4 Allowing different treetopologiesfor different
sequence fragments

Once the recombination breakpoints have been detected,see u

them to partition the alignment into separate segmentau(€ig).

When the number of segments exceeds a preset maxiMao in

this study), we use only th&’ longest unbroken segments and dis- Fig- 2. Strategy for partitioning sequences according to recoatinin

card the remaining data. The rationale behind this is thamthe ~ Preakpoints. Full sequence (top): the entire sequenceeis aisd described
segments between recombination breakpoints are very, shest by a s'ngle tree topology and set of branch lengths, 'gr.“.]m.gmb'nat'on
contain very little phylogenetic information and therefahe tree breakpoints. Largest unrecombined segments, unpagdigmiddle): only

. codons in the largesV segments that contain no recombination breakpoints
topology and branch length parameters cannot be estimated a (vertical lines) are used (illustrated here by the whiteéaes, with NV = 2).

rately for the partitions. Moreover, such small partiti@usitribute  As for the full sequence analysis, these codons are deddsipea single tree
very little information so that discarding them should besleostly  topology and set of branch lengths. Partitioning usingestrginrecombined
than introducing additional uncertainty resulting frontimating segments (bottom): each of the largdssegments that contain no recombi-
additional branch length and topology parameters for thitjos. nation breakpoints is modelled using a separate topolodysahof branch
In the present study, data was discarded only for the siedidata, — lengths.
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4 RESULTS AND DISCUSSION
4.1 Simulation experiments
We investigated power and false positive rates using thelabed

data sets (summarised in Table 1). For each data set we first co

sidered the effect of allowing the synonymous rate to vanpss
sites and of separating the tree topology and branch leraginge-
ters between the segments defined by recombination bre#&poi
given that the locations of the recombination breakpoirgkaown.
This was done by retrieving the recombination breakpoistdun
the simulations. We then present the power and false pestites
for the more realistic case in which the breakpoint locatiare not
known, but are instead inferred using a set of breakpoireatien
algorithms (Martinet al., 2005).

be a hopelessly fragmented evolutionary history, it cadhbstipos-
sible to perform reasonable inferences provided recortibimas
taken into account.

Inferring trees and branch lengths on very short segmentfi¢o
partitioning method caused a large decrease in power fosrtie
data sets, and possibly also a small increase in falseyesif his is
particularly noticeable for the partitioning method (vath synony-
mous rate variation) applied to the small positive selectiata set,
on which we obtained onlg% power at thes% significance level.
To confirm that this severe drop in power was caused by misesti
mation of tree topologies and branch lengths on the shomeets
we repeated the analysis, but with the topology and branaiths
for each segment fixed to the true (simulated) values. Tisislted
in 99% power (at both5% and 1% significance levels), which is,
as expected, identical to the result obtained for the cpamrding
unrecombined simulations. When the true topology was fixgd b
the branch lengths estimated as usual, the power&g10%)

4.1.1 True breakpoints The neutral simulations provide a worst at the5%(1%) significance level. Thus the decrease in power can

case (but nevertheless realistic) scenario with which testigate
false positive rates. We found (Table 2) that allowing theosy-
mous substitution rate to vary across sites brought aboatrge |
decrease in false positives relative to the standard methddstill
left the false positive rate unacceptably high. Partitignaccor-
ding to the true breakpoints (Table 2), on the other handyditb
false positive levels down to close to the desired rate. isdhse,
synonymous rate variation with partitioning did not givather
improvement over partitioning alone. The decrease in fisiti-
ves when partitioning has two causes. First, the fact thaesdata
is discarded inevitably leads to a reduction in power: thisloe seen
by comparing the full sequence results with the largestaomdi-
ned segments (LUS) results for the unpartitioned methoeisoig],
the partitioning itself causes a further reduction, whiglhie desi-
red effect: the magnitude of this effect can be seen by camgpar
the results for the partitioning methods with the LUS resoltthe
corresponding unpartitioned methods. Therefore, in disee the
effect of partitioning the phylogeny parameters betweerecombi-

be attributed to inaccurate estimation of the branch lexgtiich
appears to become particularly acute when the segmenhieage
this short. We caution that extremely short segment lenfgtts
resulting from extremely high recombination rates suchnathis
simulation) may cause the proposed method to lack power.

4.1.2 Detected breakpoints In real data, the true breakpoints are
unknown and have to be detected by a recombination detection
method. This has the disadvantage that there may be inagcura
in the breakpoints detected, but may also have advantagibstin
recombination events that have little or no effect (for amste
because they occur between closely related taxa and do aogeh
the tree topology, as in Figure 1(a)) will remain undetectead
thus will not have any negative effect on the power of the eth
This could explain the results in Tables 4 and 5 where we fabhatl
using the detected breakpoints resulted in better perfoceéoth

a lower rate of false positives and higher power) than udiegrue
breakpoints. In particular, the average segment lengtithéosmall

ned segments or allowing the synonymous rate to vary on the fa data sets were longer, due to the suppression of many presuma

positive rates, the results obtained using these methauddsbe
compared to those obtained by applying the standard methite t
LUS.

The positive selection simulations provide a means to hiyae
power (Table 3). Again, some caution is required here becposi-
tive results could be artefacts of recombination rathem thatances
where the method detected the signal of positive selechenert-
heless, when the false positive rate obtained on the camelipy
set of neutral simulations is low, we can conclude that ttsailte
obtained on the positive selection simulations is a goodtaitbn
of power.

bly unimportant (and difficult to detect) recombinationddpoints.
The longer segment lengths yielded improvements of theltsesu
obtained by methods using partitioning on these data sets.

Using the detected breakpoints, the power obtained usirtigipa
ning with synonymous rate variation on the small data setevas
higher than that obtained on the large data set. This cangiaiesd
by the fact that the diversity in this data set was much higbehat,
once the false signal caused by recombination has been csaype
ted for, the data set contains more information that can bd ts
obtain inferences about selective pressure.

It is reassuring that modelling synonymous rate variatiad h

For the case in which we assume that the true recombinationery little effect on the recombination-free sequencetsefgosi-

breakpoints are known, the power was higher on the largessta
than on the small data set. This was partly because the récamb
tion levels were so high in the small data set that the avesegment
length (for the 20 largest unrecombined segments) was I tmvd-
ons. In fact, given that tree topologies and branch lengteeew
inferred on such short segments, it is surprising that théhaoke
retains any power to discriminate between data sets withithdut
positive selection (as demonstrated by the higher rate sifipes in
the positive selection data sets than in the neutral da&. Sehis
shows that, even when recombination creates what mightaappe

tives were essentially unchanged while power decreasgtitisli

Partitioning had no effect: trivially, when the true breakgs were
used, there were no breakpoints to take into account sohtbaar-
titioning methods were identical to the corresponding utitxaned

methods. Recombination detection resulted in only a fewefgl
detected breakpoints (in three and eight of the 100 replcfatr the
small neutral and small positive selection data sets réispgc and
in none of the large data sets), but the inference of postlection
after partitioning gave a different result from that ob&drwithout
partitioning only for one replicate in the small positivéesgion data
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Table 2. Number of false positive inferences out of 100 replicatemiokd at the 5% (1%) significance level by different methmashe simulated neutral data
sets when using the true recombination breakpoints.

Data set Standard method Synonymous rate variation  Paniitig  Synonymous rate variation  Avg # LUS codbns
Full sequence LUS Full sequence LUS with partitioning

Small, neutral 94 (93) 69 (57) 27 (11) 17 (9) 11 (4) 13 (6) 157.®

Small, neutral (no recombination) 12 (8) 12 (8) 11 (7) 11 (7) 2(8) 11 (7) 500

Large, neutral 90 (81) 85(72) 37 (28) 34 (26) 5(2) 5(2) 410.53

Large, neutral (no recombination) 9(2) 9(2) 8 (1) 8 (1) 9(2) 8(1) 500

2LUS: using sites from largest unrecombined segments ‘bRlgrage number of codons contained in the largest unreguedtiegments.

Table 3. Power (number of true positive inferences out of 100 ref#iggobtained at the 5% (1%) significance level by differeathrads on the simulated positive selection
data sets when using the true recombination breakpoints.

Data set Standard method Synonymous rate variation ~ Partitioning noBymous rate variation  Avg # LUS coddns
Full sequence LUS  Full sequence LUS with partitioning

Small, positive selection 73 (68) 52 (41) 18 (9) 10 (4) 6 (5) 36(26) 157.79

Small, positive selection (no recombination) 99 (99) 99(99 91 (89) 91 (89) 99 (99) 91 (89) 500

Large, positive selection 100 (100) 100 (100) 70 (46) 54 (31) 80 (68) 48 (32) 410.53

Large, positive selection (no recombination) 100 (100) (1) 90 (74) 90 (74) 100 (100) 90 (74) 500

2LUS: using sites from largest unrecombined segments ‘thlgrage number of codons contained in the largest unrequedtiegments.

set, and only at the higher of the two significance levelsdisHence  when using both synonymous rate variation and partitiomiagtill
the proposed methods do not have negative effects whereddpli  detected positive selection at a highly significant leveke ¥én-

unrecombined data. clude that these sequences are likely to have evolved urathr b
recombination and positive selection.
42 Analysisof viral data sets For thegag data (Table 7) we detected only four recombination

breakpoints. This time, although partitioning (using fiegments
and discarding no data) without modelling synonymous ratéav
tion did not remove the evidence of positive selection, gsailt was
no longer significant when the synonymous rate was allowedrp
and even less so when synonymous rate variation and paitigio

Next, we used the four methods to analyse the HIV-1 subtypat& d
sets for which we have previously shown (Scheffler and Segigh
submitted) that the recombination levels are high enougtatse
false inference of positive selection. Indeed, the stahdaethod

inferred positive selection on both data sets at very higbléeof were combined. We conclude that, when recombination istake

significance. ~_account, there is no convincing evidence that these seqadrave
For theenv data (Table 6) we detected twelve recombination gyolved under positive selection.

breakpoints. We found that both modelling synonymous rateav

tion and partitioning (using thirteen segments and disogrto

data) caused reductions both in the significance level ofekalt 5 CONCLUSIONS

and in the magnitude of positive selection inferred underN2a  Our simulation results reveal that modelling synonymots varia-
model (as seen from the value of the parameter), but that even tion tends to make inference of positive selection more enfadive:

Table 4. Number of false positive inferences out of 100 replicatemiokd at the 5% (1%) significance level by different methmashe simulated neutral data
sets when using the detected recombination breakpoints.

Data set Standard method Synonymous rate variation  Paniitig  Synonymous rate variation  Avg # LUS codbns
Full sequence  LUS Full sequence LUS with partitioning

Small, neutral 94 (93) 93 (92) 27 (11) 25 (17) 11 (8) 2(2) 479.3

Small, neutral (no recombination) 12 (8) 12 (8) 11 (7) 11 (7) 2(8) 11 (7) 500

Large, neutral 90 (81) 90 (81) 37 (28) 36 (28) 10 (5) 6 (3) 498.8

Large, neutral (no recombination) 9(2) 9(2) 8 (1) 8 (1) 9(2) 8(1) 500

2LUS: using sites from largest unrecombined segments ‘bRlgrage number of codons contained in the largest unreguettiegments.




Scheffler, Martin, Seoighe

Table 5. Power (number of true positive inferences out of 100 ref@ggrobtained at the 5% (1%) significance level by differeathads on the simulated positive selection

data sets when using the detected recombination breakpoint

Data set Standard method

Synonymous rate variation ~ Partitioning noBymous rate variation ~ Avg # LUS coddns
Full sequence LUS  Full sequence LUS

with partitioning

Small, positive selection 73 (68) 75 (69)
Small, positive selection (no recombination) 99 (99) 99 (99
Large, positive selection 100 (100) 100 (100)
Large, positive selection (no recombination) 100 (100) (1om)

17 (12) 91 (30 83 (75) 463.36
91 (89) 99 (99) 91 (90) 500

70 (46) 70 (47) 97 (97) 67 (49) 498.90
90(74) 100 (100) 90 (74) 500

@LUS: using sites from largest unrecombined segments ‘bhlgrage number of codons contained in the largest unrecuediiegments.

Table 6. Results forenv data

Method p-value 2A1InL Parameter valués

Standard 0 360.8 wp = 0.045, po = 0.60,
w1 =1, p1 = 0.30,
wo = 5.37, p2 = 0.10.

Synonymous 1.24e-9 41.0 wo = 0.064, po = 0.59,
rate variation w1 =1, p1 = 0.27,
wy =4.15, pp =0.14.

Partitioning 0 206.2 wg = 0.061, po = 0.60,
w1 =1, p1 = 0.29,
wo =3.95, p2 =0.11.

Synonymous 1.66e-4 174 wo =0.071, po = 0.54,
rate variation w1 =1, p1 = 0.34,
with partitioning wg = 2.81, p2=0.11.

“Parameter values fap distribution under M2a model

Table 7. Results forgag data

Method p-value 2A1In L Parameter valués
Standard 1.3e-9 40.91 wo = 0.047, po = 0.77,
w1 =1, p1 = 0.19,
wo =4.03, p2 =0.05.
Synonymous 0.063 552 wop =0.055, po =0.74,
rate variation w1 =1, p1 = 0.21,
wg = 2.85, p2 = 0.05.
Partitioning 1.0e-7 32.21 wg = 0.056, po = 0.76,
w1 =1, p1 = 0.20,
wo = 4.42, p2 = 0.04.
Synonymous 0.16 3.61 wp=0.072, po=0.78,
rate variation w1 =1, p1 = 0.00,
with partitioning wy = 1.44, pz =0.22.

“Parameter values fav distribution under M2a model

both false positives and power go down. However, the levéls o
false positives observed in these simulations were stidicaapta-
bly high despite being much lower than when constant synooygm
rates were assumed.

Using tree topology and branch lengths inferred separdtely
segments defined by detected recombination breakpointedau
dramatic reduction in the false positive rate. For exampléhe 10-
taxon data set we obtained an improvement from 94% falséyesi
on the neutral simulations and 73% power on the positivecsele
tion simulations to 11% false positives on the neutral satiahs
and 91% power on the positive selection simulations. By demb
ning partitioning with synonymous rate variation the fatgsitive
rate dropped further to an acceptable 2%, albeit at the ¢asime
reduction in power. The final power of 83% was nevertheleglsdri
than the original power of 73%.

One of the most encouraging aspects of the simulation gesult
was the performance of the partitioning methods using tiectied
recombination breakpoints. In the current set of simutetithese
methods performed better than the methods that used théasadu
breakpoints, most likely because of the small segment tharmjiitai-
ned when all of the recombination breakpoints were useds&he
results imply that the method we propose is not highly susidep
to inaccuracy in the detected breakpoints and that the iajofr
the benefit derived from partitioning appears to be obtaiinech
the subset of most easily detectable recombination brésatispo

We have not investigated the accuracy of site-specific Setec
detection using the proposed methods. In their simulatiodiss,
Anisimovaet al. (2003) and Shrineet al. (2003) found that site-
specific analyses using standard phylogenetic methods ach m
more robust to recombination than whole-sequence analy$es
is consistent with our preliminary investigations (data sieown),
in which we failed to find high levels of site-specific falsesjiive
inference using standard methods. More recently, Kosddvend
et al. (2006) have found that under some conditions site-specific
inference using a fixed effects likelihood method can alse gi
highly misleading results in the presence of recombinatidmrese
authors found that the effects of recombination on site ifipec
inference can be alleviated by analysing unrecombined setgm
separately and we therefore recommend that the methodnprese
ted here should also be used for site-specific inference sifiy®
selection when recombination is suspected.

Our results indicate that the proposed methods are abletéo fil
out false inferences of positive selection on recombinegiseces,
but also have the power required to infer positive seledtiocsuch




Inferring positive selection under recombination

sequences when the signal of positive selection does dxist.

Evolution, 22, 160-174.

thermore we show that there is no evidence of a disadvanthge diudson,R. (1983) Properties of a neutral allele model wittragenic

applying partitioning to sequences when the sequencesriwva
fact undergone recombination. In such cases few, if anypmec
bination breakpoints were detected and inferring the weelbgy
and branch length parameters separately for the resudtigg Linre-
combined segments appeared to have no effect on the powaser f
positive rates. We therefore recommend that a method sutteas
one we describe, that includes a screen for recombinatidisepa-
ration of phylogeny parameters between recombinatiorkpeats
be applied routinely when phylogenetic methods are usedfés i
positive selection in sequences for which recombinatigrossible.
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