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ABSTRACT
Motivation: Accurate detection of positive Darwinian selection can
provide important insights to researchers investigating the evolu-
tion of pathogens. However, many pathogens (particularly viruses)
undergo frequent recombination and the phylogenetic methods com-
monly applied to detect positive selection have been shown to give
misleading results when applied to recombining sequences. We pro-
pose a method that makes maximum likelihood inference of positive
selection robust to the presence of recombination. This is achieved by
allowing tree topologies and branch lengths to change across detec-
ted recombination breakpoints. Further improvements are obtained
by allowing synonymous substitution rates to vary across sites.
Results: Using simulation we show that, even for extreme cases
where recombination causes standard methods to reach false positive
rates above 90%, the proposed method decreases the false positive
rate to acceptable levels while retaining high power. We applied the
method to two HIV-1 data sets for which we have previously found that
inference of positive selection is invalid due to high rates of recombi-
nation. In one of these (env gene) we still detected positive selection
using the proposed method, while in the other (gag gene) we found
no significant evidence of positive selection.
Availability: A HyPhy batch language implementation of the pro-
posed methods and the HIV-1 data sets analysed are available at
http://www.cbio.uct.ac.za/pubsupport/bioinf06. The HyPhy package is
available at http://www.hyphy.org, and it is planned that the proposed
methods will be included in the next distribution. RDP2 is available at
http://darwin.uvigo.es/rdp/rdp.html.
Contact: konrad@cbio.uct.ac.za, cathal@science.uct.ac.za

1 INTRODUCTION
The standard phylogenetic approach to inferring positive Darwi-
nian selection in protein-coding sequences is based on the codon
models first proposed by Muse and Gaut (1994) and Goldman and
Yang (1994), which have since been developed into a set of robust
methods that detect positive selection while allowing for selective
pressure to vary across sites (Nielsen and Yang, 1998; Yanget al.,
2000; Wonget al., 2004). These methods, however, assume that the
phylogenetic tree topology and branch lengths are constantacross
all sites in the sequence – an assumption which is invalid when the
sequences have been affected by recombination. Indeed, it has been
shown (Anisimovaet al., 2003; Shrineret al., 2003) that the pre-
sence of recombination can cause these methods to fail with type I
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(false positive) error rates as high as 90%. In a recent study(Scheff-
ler and Seoighe, submitted), we quantified the percentage offalse
positive inferences as a function of recombination rate anddemon-
strated that inferred positive selection on two example HIVdata sets
is invalidated by the presence of recombination.

Recombination can contribute to false inference of positive selec-
tion by causing the branch lengths (Figure 1(a)) and tree topologies
(Figure 1(b)) to differ between sites. In order to devise a robust
method of inferring positive selection we investigated theimpact
of allowing tree topology and branch length parameters to change
across recombination breakpoints. In a real analysis we anticipate
that a subset of recombination breakpoints might be undetected. In
order to improve the performance of our method in the presence of a
subset of undetected recombination breakpoints we included a varia-
ble synonymous substitution rate in our models, which allows the
total tree length to vary from site to site. Sequences can evolve under
a variable synonymous substitution rate due to mutation rate varia-
tion or due to site-specific selection acting on synonymous changes,
but synonymous rate variation could also be detected as a result of
recombination events that alter branch lengths. Incorporating syn-
onymous rate variation in the model can therefore account for some
of the misestimated branch lengths that result from recombination
events that alter branch lengths but not tree topology. In general, we
expect these recombination events to be more difficult to detect than
those that cause a substantial change in tree topology. We evaluated
the performance of the method by simulation and applied it toinve-
stigate whether the HIV data sets mentioned above can be inferred
to be evolving under positive selection when recombinationis taken
into account.

2 MATERIALS AND METHODS
We generated a number of data sets using the Codonrecsim program writ-
ten by Rasmus Nielsen (Anisimovaet al., 2003) that simulates recombined
coding sequence alignments. It does this by simulating under a phyloge-
netic model of evolution using the discrete model (M3) of site-to-site rate
variation proposed by Yanget al. (2000), but with the evolution taking place
along genealogies simulated under the coalescent model with recombination
(Hudson, 1983). This means that sites that have a recombination breakpoint
between them do not evolve along the same phylogenetic tree.Barton and
Etheridge (2004) have shown that selection has little effect on genealogies,
which justifies neglecting selection when simulating genealogies under the
coalescent model with recombination.

We performed two suites of simulation experiments, one using 10-taxon
and one using 30-taxon data sets (Table 1). In each suite we simulated neu-
trally evolving data sets (i.e.ω = 1, mimicking pseudogene evolution)
to estimate false positive rates and data sets evolving withsite-to-site rate
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Fig. 1. Recombination graphs (Hudson, 1983) (above) and corresponding
trees (below) illustrating (a) a recombination event that changes the tree
length but not the topology and (b) a recombination event that changes both
the tree length and the topology. In the recombination graphs, the letter C
indicates coalescent events while the letter R indicates recombination events.

Table 1. Simulation parameters used to create data sets.

Data set Nr of taxa ρa θb Selectionc

Small, neutral 10 0.05 3.6 no
Small, positive selection 10 0.05 3.6 yes
Small, neutral (no recomb.) 10 0 3.6 no
Small, pos. sel. (no recomb.) 10 0 3.6 yes
Large, neutral 30 0.01 0.36 no
Large, positive selection 30 0.01 0.36 yes
Large, neutral (no recomb.) 30 0 0.36 no
Large, pos. sel. (no recomb.) 30 0 0.36 yes

aρ: population-scaled recombination rate,ρ = 4Ner. bθ: population-scaled
mutation rate,θ = 4Neµ. cSelection: The discrete model of Yanget al. (2000)
was used; “no” indicates thatω = 1 at all sites, while “yes” indicatesω1 = 0.08,
p1 = 0.659, ω2 = 0.61, p2 = 0.206, ω3 = 2.55, p3 = 0.135, where
ω values are the non-synonymous/synonymous rate ratios andp values are the
proportion of sites for which the correspondingω values apply.

variation and positive selection (using the parameters inferred by Anisimova
et al. (2003) on their hepatitis D antigen data set under the 3-component
discrete model (Yanget al., 2000)) to estimate power. Each simulated ali-
gnment was 500 codons long, and each data set consisted of 100replicates.
The transition/transversion rate ratio (κ) was set to2 and the codon equili-
brium frequencies to those empirically estimated for the Hepatitis D antigen
data set. We chose mutation and recombination rate parameters that produ-
ced high false positive rates when using the standard method(see below) to
infer positive selection on the neutral data sets. For the 30-taxon data sets the
population-scaled recombination rate (ρ) was0.01 and the population-scaled
mutation rate (θ) was0.36, resulting in an average of43.2 recombination
events in the entire genealogy and an expected number of1.43 mutations
per codon. For the 10-taxon data setsρ was0.05 andθ was3.6, resulting
in an average of247.11 recombination events in the entire genealogy and
an expected number of10.18 mutations per codon (the very high values for
the 10-taxon data sets serve to illustrate that the method works well even in
extreme cases). To verify that the proposed method does not have an adverse

effect when used on unrecombined data, we also simulated data sets with
exactly the same parameters but with zero recombination rate.

Finally, we analysed the HIV-1 subtype Cenv andgag data of our recent
study (Scheffler and Seoighe, submitted). These data sets contain 10 taxa
each, with accession numbersAY118165-AY118166, AF286227, AY158533-
AY158535, AF411967, AF391234-AF391235 and AF391238 for the env
sequences (1053 codons in length) andAY118165-AY118166, AF286227,
AY158533-AY158535, AF411967, AY162223-AY162224 andAF391254 for
thegag sequences (590 codons in length).

3 ALGORITHM
In this study we report results for four methods of detectingposi-
tive selection, using different combinations of the two strategies
investigated:

Standard: This is the baseline method, which assumes that
topology, relative branch lengths and total tree length are
constant over all sites.

Synonymous rate variation: This method assumes that topo-
logy and relative branch length are constant over all sites,but
allows total tree length to vary from site to site.

Partitioning: This method uses recombination breakpoints
(either detected or the actual simulated breakpoints) to divide
the alignment into partitions, each of which is assumed to
include no further recombination breakpoints. Topology, rela-
tive branch lengths and total tree length are forced to be
constant over all sites within a partition, but allowed to vary
between partitions.

Synonymous rate variation with partitioning: This method
combines the previous two methods: topology and relative
branch lengths are assumed constant over all sites within a par-
tition, but allowed to vary between partitions. Total tree length
is allowed to vary from site to site irrespective of partitioning.

We implemented the above methods using the batch language of
the HyPhy package (Kosakovsky Pondet al., 2005).

3.1 Baseline (standard) method
We detected positive selection by comparing the discrete “nearly
neutral” and “selection” models M1a and M2a of Wonget al.
(2004). We used the PAUP* program (Swofford, 2002) to estimate
the maximum likelihood topologies under the HKY85 model (Hase-
gawaet al., 1985). To save computation time, we did not estimate
the branch lengths separately for each model, but instead used the
branch lengths estimated under the M0 (single rate) model (Yang
et al., 2000). We report a sequence as being under positive selection
at the 5% or 1% level if model M2a provides a significantly better
fit than model M1a as measured by a likelihood ratio test with the
appropriate significance level.

3.2 Allowing synonymous rate variation
In the methods that model synonymous rate variation we added
a synonymous substitution rate parameter to the baseline method.
We treat the synonymous rates as belonging to one of a num-
ber of discrete rate classes, similar to the treatment of thenon-
synonymous/synonymous rate ratioω, so that the expression for
the instantaneous substitution rate from codoni to codonj at site
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0, for difference at more than one position,
πjs(h), for synonymous transversion,
κπjs(h), for synonymous transition,
ω(h)πjs(h), for non-synonymous transversion,
ω(h)κπjs

(h), for non-synonymous transition.

(1)

Here,κ is the transition/transversion rate ratio andπj is the codon
equilibrium frequency of codonj. ω(h) and s(h) denote, respec-
tively, the non-synonymous/synonymous rate ratio and synonymous
rate at siteh.

The synonymous rate is drawn from a discrete distribution with
three rate categories (we obtained no noticeable difference in results
when using four categories, data not shown), with rates scaled such
that the average synonymous rate over all sites is1. This distribution
is identical to that used for theω parameter in the discrete model M3
of Yang et al. (2000), except that the latter is unscaled. Thus each
site, in addition to belonging to one of theω categories, also belongs
to a synonymous rate category. This can also be viewed as providing
three different tree scales: the evolution at each site is modelled as
following the same tree topology and relative branch lengths, but
the tree may be scaled differently for different sites.

Note that our parameterisation of site-to-site rate variation is dif-
ferent from that used by Kosakovsky Pond and Muse (2005), which
uses the synonymous rate only for synonymous changes and hence
is not a direct measure of total tree length (s(h) is absent from
the expression for the instantaneous rate of non-synonymous tran-
sitions and transversions). Whereas Kosakovsky Pond and Muse
(2005) apply parametric models to the distribution of synonymous
and of nonsynonymous rates, our parameterisation applies the same
parametric models to the distribution of synonymous rates and of
selective strengths.

3.3 Detecting recombination breakpoints
For the methods using partitioning by detected recombination we
estimated the positions of recombination breakpoints using the
non-parametric RDP (Martin and Rybicki, 2000), GENECONV
(Padidamet al., 1999), and MAXIMUM CHI SQUARED (May-
nard Smith, 1992) methods as implemented in RDP2 (Martinet al.,
2005). See Pokeet al. (2006) for a description of how these methods
work. Default program settings were used throughout exceptthat a
Bonferroni corrected P-value cutoff of 0.01 was used to minimise
the probability of falsely inferring recombination. All breakpoints
detected by any of the three methods were taken into consideration.

3.4 Allowing different tree topologies for different
sequence fragments

Once the recombination breakpoints have been detected, we use
them to partition the alignment into separate segments (Figure 2).
When the number of segments exceeds a preset maximumN (20 in
this study), we use only theN longest unbroken segments and dis-
card the remaining data. The rationale behind this is that when the
segments between recombination breakpoints are very short, they
contain very little phylogenetic information and therefore the tree
topology and branch length parameters cannot be estimated accu-
rately for the partitions. Moreover, such small partitionscontribute
very little information so that discarding them should be less costly
than introducing additional uncertainty resulting from estimating
additional branch length and topology parameters for the partition.
In the present study, data was discarded only for the simulated data,

which had very high rates of recombination. The number of break-
points detected in the real data sets we examined was lower than the
maximum in both cases.

Next, topologies and branch lengths are estimated as in the base-
line method, except that a separate topology and set of branch
lengths is used for each segment. The remaining model parameters,
however, are shared across all segments. In particular, thepara-
meters of models M1a and M2a describing the rate categories are
estimated only once for all segments.

To allow fairer comparison with the unpartitioned methods,we
present the results for the simulation experiments not onlyfor the
full unpartitioned sequence (Figure 2, top), but also for anunpar-
titioned analysis of the sites in the largest unrecombined segments
only (Figure 2, middle). This latter result provides a more direct
comparison with the partitioned analysis (Figure 2, bottom) which
uses the same subset of the codons.

Fig. 2. Strategy for partitioning sequences according to recombination
breakpoints. Full sequence (top): the entire sequence is used and described
by a single tree topology and set of branch lengths, ignoringrecombination
breakpoints. Largest unrecombined segments, unpartitioned (middle): only
codons in the largestN segments that contain no recombination breakpoints
(vertical lines) are used (illustrated here by the white regions, withN = 2).
As for the full sequence analysis, these codons are described by a single tree
topology and set of branch lengths. Partitioning using largest unrecombined
segments (bottom): each of the largestN segments that contain no recombi-
nation breakpoints is modelled using a separate topology and set of branch
lengths.
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4 RESULTS AND DISCUSSION

4.1 Simulation experiments
We investigated power and false positive rates using the simulated
data sets (summarised in Table 1). For each data set we first con-
sidered the effect of allowing the synonymous rate to vary across
sites and of separating the tree topology and branch length parame-
ters between the segments defined by recombination breakpoints,
given that the locations of the recombination breakpoints are known.
This was done by retrieving the recombination breakpoints used in
the simulations. We then present the power and false positive rates
for the more realistic case in which the breakpoint locations are not
known, but are instead inferred using a set of breakpoint detection
algorithms (Martinet al., 2005).

4.1.1 True breakpoints The neutral simulations provide a worst
case (but nevertheless realistic) scenario with which to investigate
false positive rates. We found (Table 2) that allowing the synony-
mous substitution rate to vary across sites brought about a large
decrease in false positives relative to the standard method, but still
left the false positive rate unacceptably high. Partitioning accor-
ding to the true breakpoints (Table 2), on the other hand, brought
false positive levels down to close to the desired rate. In this case,
synonymous rate variation with partitioning did not give further
improvement over partitioning alone. The decrease in falsepositi-
ves when partitioning has two causes. First, the fact that some data
is discarded inevitably leads to a reduction in power: this can be seen
by comparing the full sequence results with the largest unrecombi-
ned segments (LUS) results for the unpartitioned methods. Second,
the partitioning itself causes a further reduction, which is the desi-
red effect: the magnitude of this effect can be seen by comparing
the results for the partitioning methods with the LUS results of the
corresponding unpartitioned methods. Therefore, in orderto see the
effect of partitioning the phylogeny parameters between unrecombi-
ned segments or allowing the synonymous rate to vary on the false
positive rates, the results obtained using these methods should be
compared to those obtained by applying the standard method to the
LUS.

The positive selection simulations provide a means to investigate
power (Table 3). Again, some caution is required here because posi-
tive results could be artefacts of recombination rather than instances
where the method detected the signal of positive selection.Nevert-
heless, when the false positive rate obtained on the corresponding
set of neutral simulations is low, we can conclude that the result
obtained on the positive selection simulations is a good indication
of power.

For the case in which we assume that the true recombination
breakpoints are known, the power was higher on the large dataset
than on the small data set. This was partly because the recombina-
tion levels were so high in the small data set that the averagesegment
length (for the 20 largest unrecombined segments) was below8 cod-
ons. In fact, given that tree topologies and branch lengths were
inferred on such short segments, it is surprising that the method
retains any power to discriminate between data sets with andwithout
positive selection (as demonstrated by the higher rate of positives in
the positive selection data sets than in the neutral data sets). This
shows that, even when recombination creates what might appear to

be a hopelessly fragmented evolutionary history, it can still be pos-
sible to perform reasonable inferences provided recombination is
taken into account.

Inferring trees and branch lengths on very short segments for the
partitioning method caused a large decrease in power for thesmall
data sets, and possibly also a small increase in false positives. This is
particularly noticeable for the partitioning method (without synony-
mous rate variation) applied to the small positive selection data set,
on which we obtained only6% power at the5% significance level.
To confirm that this severe drop in power was caused by misesti-
mation of tree topologies and branch lengths on the short segments
we repeated the analysis, but with the topology and branch lengths
for each segment fixed to the true (simulated) values. This resulted
in 99% power (at both5% and1% significance levels), which is,
as expected, identical to the result obtained for the corresponding
unrecombined simulations. When the true topology was fixed but
the branch lengths estimated as usual, the power was14%(10%)
at the5%(1%) significance level. Thus the decrease in power can
be attributed to inaccurate estimation of the branch lengths, which
appears to become particularly acute when the segment lengths are
this short. We caution that extremely short segment lengths(e.g.
resulting from extremely high recombination rates such as in this
simulation) may cause the proposed method to lack power.

4.1.2 Detected breakpoints In real data, the true breakpoints are
unknown and have to be detected by a recombination detection
method. This has the disadvantage that there may be inaccuracy
in the breakpoints detected, but may also have advantages inthat
recombination events that have little or no effect (for instance
because they occur between closely related taxa and do not change
the tree topology, as in Figure 1(a)) will remain undetected, and
thus will not have any negative effect on the power of the method.
This could explain the results in Tables 4 and 5 where we foundthat
using the detected breakpoints resulted in better performance (both
a lower rate of false positives and higher power) than using the true
breakpoints. In particular, the average segment lengths for the small
data sets were longer, due to the suppression of many presuma-
bly unimportant (and difficult to detect) recombination breakpoints.
The longer segment lengths yielded improvements of the results
obtained by methods using partitioning on these data sets.

Using the detected breakpoints, the power obtained using partitio-
ning with synonymous rate variation on the small data set waseven
higher than that obtained on the large data set. This can be explained
by the fact that the diversity in this data set was much higherso that,
once the false signal caused by recombination has been compensa-
ted for, the data set contains more information that can be used to
obtain inferences about selective pressure.

It is reassuring that modelling synonymous rate variation had
very little effect on the recombination-free sequences: false posi-
tives were essentially unchanged while power decreased slightly.
Partitioning had no effect: trivially, when the true breakpoints were
used, there were no breakpoints to take into account so that the par-
titioning methods were identical to the corresponding unpartitioned
methods. Recombination detection resulted in only a few falsely
detected breakpoints (in three and eight of the 100 replicates for the
small neutral and small positive selection data sets respectively, and
in none of the large data sets), but the inference of positiveselection
after partitioning gave a different result from that obtained without
partitioning only for one replicate in the small positive selection data
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Table 2. Number of false positive inferences out of 100 replicates obtained at the 5% (1%) significance level by different methodson the simulated neutral data
sets when using the true recombination breakpoints.

Data set Standard method Synonymous rate variation Partitioning Synonymous rate variation Avg # LUS codonsb

Full sequence LUSa Full sequence LUSa with partitioning

Small, neutral 94 (93) 69 (57) 27 (11) 17 (9) 11 (4) 13 (6) 157.79
Small, neutral (no recombination) 12 (8) 12 (8) 11 (7) 11 (7) 12 (8) 11 (7) 500
Large, neutral 90 (81) 85 (72) 37 (28) 34 (26) 5 (2) 5 (2) 410.53
Large, neutral (no recombination) 9 (2) 9 (2) 8 (1) 8 (1) 9 (2) 8 (1) 500

aLUS: using sites from largest unrecombined segments only.bAverage number of codons contained in the largest unrecombined segments.

Table 3. Power (number of true positive inferences out of 100 replicates) obtained at the 5% (1%) significance level by different methods on the simulated positive selection
data sets when using the true recombination breakpoints.

Data set Standard method Synonymous rate variation Partitioning Synonymous rate variation Avg # LUS codonsb

Full sequence LUSa Full sequence LUSa with partitioning

Small, positive selection 73 (68) 52 (41) 18 (9) 10 (4) 6 (5) 36 (26) 157.79
Small, positive selection (no recombination) 99 (99) 99 (99) 91 (89) 91 (89) 99 (99) 91 (89) 500
Large, positive selection 100 (100) 100 (100) 70 (46) 54 (31) 80 (68) 48 (32) 410.53
Large, positive selection (no recombination) 100 (100) 100(100) 90 (74) 90 (74) 100 (100) 90 (74) 500

aLUS: using sites from largest unrecombined segments only.bAverage number of codons contained in the largest unrecombined segments.

set, and only at the higher of the two significance levels listed. Hence
the proposed methods do not have negative effects when applied to
unrecombined data.

4.2 Analysis of viral data sets
Next, we used the four methods to analyse the HIV-1 subtype C data
sets for which we have previously shown (Scheffler and Seoighe,
submitted) that the recombination levels are high enough tocause
false inference of positive selection. Indeed, the standard method
inferred positive selection on both data sets at very high levels of
significance.

For the env data (Table 6) we detected twelve recombination
breakpoints. We found that both modelling synonymous rate varia-
tion and partitioning (using thirteen segments and discarding no
data) caused reductions both in the significance level of theresult
and in the magnitude of positive selection inferred under the M2a
model (as seen from the value of theω2 parameter), but that even

when using both synonymous rate variation and partitioningwe still
detected positive selection at a highly significant level. We con-
clude that these sequences are likely to have evolved under both
recombination and positive selection.

For thegag data (Table 7) we detected only four recombination
breakpoints. This time, although partitioning (using five segments
and discarding no data) without modelling synonymous rate varia-
tion did not remove the evidence of positive selection, the result was
no longer significant when the synonymous rate was allowed tovary
and even less so when synonymous rate variation and partitioning
were combined. We conclude that, when recombination is taken into
account, there is no convincing evidence that these sequences have
evolved under positive selection.

5 CONCLUSIONS
Our simulation results reveal that modelling synonymous rate varia-
tion tends to make inference of positive selection more conservative:

Table 4. Number of false positive inferences out of 100 replicates obtained at the 5% (1%) significance level by different methodson the simulated neutral data
sets when using the detected recombination breakpoints.

Data set Standard method Synonymous rate variation Partitioning Synonymous rate variation Avg # LUS codonsb

Full sequence LUSa Full sequence LUSa with partitioning

Small, neutral 94 (93) 93 (92) 27 (11) 25 (17) 11 (8) 2 (2) 479.35
Small, neutral (no recombination) 12 (8) 12 (8) 11 (7) 11 (7) 12 (8) 11 (7) 500
Large, neutral 90 (81) 90 (81) 37 (28) 36 (28) 10 (5) 6 (3) 498.26
Large, neutral (no recombination) 9 (2) 9 (2) 8 (1) 8 (1) 9 (2) 8 (1) 500

aLUS: using sites from largest unrecombined segments only.bAverage number of codons contained in the largest unrecombined segments.
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Table 5. Power (number of true positive inferences out of 100 replicates) obtained at the 5% (1%) significance level by different methods on the simulated positive selection
data sets when using the detected recombination breakpoints.

Data set Standard method Synonymous rate variation Partitioning Synonymous rate variation Avg # LUS codonsb

Full sequence LUSa Full sequence LUSa with partitioning

Small, positive selection 73 (68) 75 (69) 18 (9) 17 (12) 91 (80) 83 (75) 463.36
Small, positive selection (no recombination) 99 (99) 99 (99) 91 (89) 91 (89) 99 (99) 91 (90) 500
Large, positive selection 100 (100) 100 (100) 70 (46) 70 (47) 97 (97) 67 (49) 498.90
Large, positive selection (no recombination) 100 (100) 100(100) 90 (74) 90 (74) 100 (100) 90 (74) 500

aLUS: using sites from largest unrecombined segments only.bAverage number of codons contained in the largest unrecombined segments.

Table 6. Results forenv data

Method p-value 2∆ lnL Parameter valuesa

Standard 0 360.8 ω0 = 0.045, p0 = 0.60,
ω1 = 1, p1 = 0.30,
ω2 = 5.37, p2 = 0.10.

Synonymous 1.24e-9 41.0 ω0 = 0.064, p0 = 0.59,
rate variation ω1 = 1, p1 = 0.27,

ω2 = 4.15, p2 = 0.14.

Partitioning 0 206.2 ω0 = 0.061, p0 = 0.60,
ω1 = 1, p1 = 0.29,
ω2 = 3.95, p2 = 0.11.

Synonymous 1.66e-4 17.4 ω0 = 0.071, p0 = 0.54,
rate variation ω1 = 1, p1 = 0.34,
with partitioning ω2 = 2.81, p2 = 0.11.

aParameter values forω distribution under M2a model

Table 7. Results forgag data

Method p-value 2∆ ln L Parameter valuesa

Standard 1.3e-9 40.91 ω0 = 0.047, p0 = 0.77,
ω1 = 1, p1 = 0.19,
ω2 = 4.03, p2 = 0.05.

Synonymous 0.063 5.52 ω0 = 0.055, p0 = 0.74,
rate variation ω1 = 1, p1 = 0.21,

ω2 = 2.85, p2 = 0.05.

Partitioning 1.0e-7 32.21 ω0 = 0.056, p0 = 0.76,
ω1 = 1, p1 = 0.20,
ω2 = 4.42, p2 = 0.04.

Synonymous 0.16 3.61 ω0 = 0.072, p0 = 0.78,
rate variation ω1 = 1, p1 = 0.00,
with partitioning ω2 = 1.44, p2 = 0.22.

aParameter values forω distribution under M2a model

both false positives and power go down. However, the levels of
false positives observed in these simulations were still unaccepta-
bly high despite being much lower than when constant synonymous
rates were assumed.

Using tree topology and branch lengths inferred separatelyfor
segments defined by detected recombination breakpoints caused a
dramatic reduction in the false positive rate. For example,in the 10-
taxon data set we obtained an improvement from 94% false positives
on the neutral simulations and 73% power on the positive selec-
tion simulations to 11% false positives on the neutral simulations
and 91% power on the positive selection simulations. By combi-
ning partitioning with synonymous rate variation the falsepositive
rate dropped further to an acceptable 2%, albeit at the cost of some
reduction in power. The final power of 83% was nevertheless higher
than the original power of 73%.

One of the most encouraging aspects of the simulation results
was the performance of the partitioning methods using the detected
recombination breakpoints. In the current set of simulations these
methods performed better than the methods that used the simulated
breakpoints, most likely because of the small segment lengths obtai-
ned when all of the recombination breakpoints were used. These
results imply that the method we propose is not highly susceptible
to inaccuracy in the detected breakpoints and that the majority of
the benefit derived from partitioning appears to be obtainedfrom
the subset of most easily detectable recombination breakpoints.

We have not investigated the accuracy of site-specific selection
detection using the proposed methods. In their simulation studies,
Anisimova et al. (2003) and Shrineret al. (2003) found that site-
specific analyses using standard phylogenetic methods are much
more robust to recombination than whole-sequence analyses. This
is consistent with our preliminary investigations (data not shown),
in which we failed to find high levels of site-specific false positive
inference using standard methods. More recently, Kosakovsky Pond
et al. (2006) have found that under some conditions site-specific
inference using a fixed effects likelihood method can also give
highly misleading results in the presence of recombination. These
authors found that the effects of recombination on site specific
inference can be alleviated by analysing unrecombined segments
separately and we therefore recommend that the method presen-
ted here should also be used for site-specific inference of positive
selection when recombination is suspected.

Our results indicate that the proposed methods are able to filter
out false inferences of positive selection on recombined sequences,
but also have the power required to infer positive selectionin such
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sequences when the signal of positive selection does exist.Fur-
thermore we show that there is no evidence of a disadvantage of
applying partitioning to sequences when the sequences havenot in
fact undergone recombination. In such cases few, if any, recom-
bination breakpoints were detected and inferring the tree topology
and branch length parameters separately for the resulting large unre-
combined segments appeared to have no effect on the power or false
positive rates. We therefore recommend that a method such asthe
one we describe, that includes a screen for recombination and sepa-
ration of phylogeny parameters between recombination breakpoints
be applied routinely when phylogenetic methods are used to infer
positive selection in sequences for which recombination ispossible.
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