H y-P hy Users Manual

Spencer Muse * Sergei Kosakovsky Pond 2
North Carolina State University University of Arizona

May 31, 2000

IProgram in Statistical Genetics, Department of Statistics, Campus Box 8203, NC State University,
Raleigh NC 27695-8203

2Program in Applied Mathematics, Department of Mathematics, University of Arizona, Tucson AZ
85721

Abstract

Hy-Phy is a high-level programming language for performing molecular evolutionary analyses.
Although Hy-Phy has a growing number of tree reconstruction features, its primary design is not
to reconstruct phylogenetic trees. Instead, the object of Hy-Phy is to provide a flexible platform
for studying rates and patterns of sequence change.

Chapterl. Using the Shell Interface

Chapter 1

Using the Shell Interface

1.1 Getting Help

The documentation for Hy-Phy is a work in progress. However, there are several sources of
information in addition to this basic document. An html-based help system is available, and
should be available as part of the basic distribution. Depending on your platform, it may be
available through the Help menu. There is also online help available at the Hy-Phy home
page. Both sources include an exhaustive listing of Hy-Phy functions, commands, constants,
and syntax.

1.2 Starting Hy-Phy

Macintosh and Windows

To start Hy-Phy simply double-click the program icon located in the distribution folder.

UNIX

If you installed Hy-Phy in your home directory, execute the command HYPHYKernel from the
prompt. If Hy-Phy is installed in a shared directory in your system, the system administrator
should have set up a HYPHY alias which can be used to start up the program. If you wish to run
Hy-Phy from a directory other than its installation directory, execute the command ’path to
Hy-Phy/HYPHYKernel BASEPATH=path to Hy-Phy'.

Chapterl. Using the Shell Interface 1.2: Starting Hy-Phy

Running Standard Analyses
Macintosh and Windows

Standard analyses can be accessed via the Analysis menu. A dialog box which contains the list
of currently available analyses will appear and you can select an item from the list. There will
also be a brief description of each item in the list for you to peruse. For complete details of what
each standard analysis does, refer to the relevant topics in Hy-Phy documentation.

Note that if the standard analyses dialog box comes up empty, the most likely cause is that
Hy-Phy can’t find its TemplateBatchFiles folder, which should be in the same folder as Hy-
Phy itself.

UNIX

When Hy-Phy starts up, its default behavior is to scan for and display the list of currently
available standard analyses. You can select a standard analysis to run by typing in its abbreviation
(specified in the list).

Hy-Phy will not display the list of standard analysis in 2 cases:

1. A batch file to process was passed to Hy-Phy via a command line argument

2. Hy-Phy could not locate the TemplateBatchFiles directory.

If TemplateBatchFiles is not in the current working directory, you may need to explicitly
tell Hy-Phy where the standard analyses are located. To do so, use the

BASEPATH=absolute path to Hy-Phy installation directory
(no spaces and all capital letters in BASEPATH) command line argument.

For example, if you running Hy-Phy from the directory /home/joeuser/, and the Hy-
Phy installation is located in /usr/local/HYPHY /, then you would execute (assuming that
Jusr/local/HYPHY/ is in the search paths),

HYPHYKernel BASEPATH=/usr/local/HYPHY/

In most cases, there should be a system wide alias which will automatically include the
BASEPATH argument.

All standard analyses include prompts from data files and similar input. A typical prompt
will look like this:

Select a nucleotide file(/home/joeuser/):

The path in parentheses is the current base for Hy-Phy relative path names. For instance,
if you supply data/50seq.nuc as the input to the prompt, Hy-Phy will look for the file
/home/joeuser/data/50seq.nuc. You can specify an absolute path name as input to any file
related prompts, and use ../ in relative paths to refer to parent directory(ies).

Chapterl. Using the Shell Interface 1.2: Starting Hy-Phy

Running Prewritten Batch Files
Macintosh and Windows

Batch Files in Examples. To run a batch file from Examples, select Run Batch File from the
File menu, and choose the file you wish to process via a standard file selection dialog box. The
Ezxamples folder should be located in the same folder as Hy-Phy itself.

Other Batch Files. To run any batch file, select Run Batch File from the File menu, and
choose the file you wish to process via a standard file selection dialog box. By default, Hy-Phy
Batch files have extensions .bf. Please note that some batch file may write their output directly
to a file, rather than to the screen.

UNIX

Batch Files in Examples and other Batch Files. There are two ways to tell Hy-Phy to
run a specific batch file:

1. Pass the name/path to the file as a command line argument.

For example, if current working directory is /home/joeuser/, and you wish to run the file
/home/joeuser/BatchFiles/joes.bf the command to execute would be:

HYPHYKernel BatchF'iles/joes.bf
or
HYPHYKernel /home/joeuser/BatchF'iles/joes.bf.
2. Start Hy-Phy and when prompted to select a standard analysis, press Enter to skip the
selection. A prompt
Process Bath File:

should appear, and you can direct Hy-Phy to execute a particular batch file by giving a
relative or absolute path to the file, as in the example above.

Chapter2. Basics

Chapter 2

Basics

Hy-Phy is very feature rich, as its primary purpose was to serve as the authors’ research tool.
Therefore, there are many features that most users will never implement. In fact, many, if not
most users, will rely almost totally on prewritten Hy-Phy ”batch files” (lines of code that Hy-
Phy interprets, much like a SAS program). To introduce the major components of the Hy-Phy
language, we will first step through some very basic batch files so that the core batch file elements
are described.

2.1 Simple Batch Files

Most batch files will include a few key elements:

1. Read a data file
Select the species and characters to be analyzed (Filter the data)
Tabulate or define frequencies of characters

Describe the form of a substitution matrix

AN R

Combine the character frequencies and substitution matrix into an evolutionary model for
your characters

Describe a phylogenetic tree
Define a likelihood function based on the tree, data, and model.

Maximize the likelihood function

© ® N>

Print the results to the screen and/or an output file.

Let us begin with a very simple example. In the following batch file we will fit a set of DNA
sequence data from 4 species to an unrooted tree using the F81 (Felsenstein 1981) model of
sequence evolution. (The batch file is named ”basics.bf” and should be in the Tutorial directory
of the Hy-Phy distribution.)

Chapter2. Basics 2.1: Simple Batch Files

DataSet myData = ReadDataFile ("data/demo.seq");
DataSetFilter myFilter = CreateFilter (myData,1);
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
F81RateMatrix =

{{* ,mu,mu,mu}

{mu,* ,mu,mu}

{mu,mu,* ,mu}

{mu,mu,mu,* }};
Model F81 = (F81RateMatrix, obsFregs);
Tree myTree = ((a,b),c,d);
LikelihoodFunction theLikFun = (myFilter, myTree, obsFreqgs);
Optimize (paramValues, theLikFun);
fprintf (stdout, theLikFun);

First of all, notice that the nine lines of code in "basics.bf” (the comment lines have been
removed in the above display) correspond to the nine steps enumerated previously. Let us consider
each of them.

Read a data file.

The line of code
DataSet myData = ReadDataFile ("../data/demo.seq");

reads data from the file demo.seq (located in the data directory) and stores the data in a
structure called myData. The line of code uses two Hy-Phy commands, DataSet and Read-
DataFile. The first part of the program statement, DataSet myData, simply tells Hy-Phy to
create a structure named myData that will hold a data set. The second part of the statement,

ReadDataFile("../data/demo.seq")

actually reads and processes the data in the file demo.seq.

Select the species and characters to be analyzed (Filter the data)

The line of code
DataSetFilter myFilter = CreateFilter (myData,1);

performs two important tasks. First, it selects the precise data elements from myData that we
want to use for our analysis. In this case, we use all of the data by default by ignoring some
optional arguments to the CreateFilter command. See Chapter 5. to learn more about the
features of CreateFilter. The second important task is to let Hy-Phy know how we want to

Chapter2. Basics 2.1: Simple Batch Files

”interpret” the data. The argument ”1” indicates that each individual nucleotide is to be treated
as a single character. Had we instead used ”3”, each consecutive triplet of nucleotides would be
considered as a ”character”. Obviously, this type of filtering might be of use for analyzing codon
data. If one wanted to analyze dinucleotides, the second argument to CreateFilter would be ”2”.
Note that multiple data set filters can be created from a single data set. We will see several
examples of creating data set filters in later examples.

Tabulate or define frequencies of characters

For likelihood calculations it is necessary to define the equilibrium frequencies of characters. In
most cases we will estimate these from the data, often by simply using the observed empirical
frequencies. The statement

HarvestFrequencies (obsFreqgs, myFilter, 1, 1, 1);

tabulates the nucleotide frequencies in myFilter and stores them in a vector named obsFregs.

Had we wanted to use different frequency values for some reason, HarvestFrequencies state-
ment would simply have been replaced with something like

myFavoriteFreqs = {{.10}{.40}{.20}{.30}};

This statement would create a vector named myFavoriteFreqs with elements 0.10, 0.40, 0.20, and
0.30. myFavoriteFregs could be used just like the variable obsFregs.

Describe the form of a substitution matrix

One of the unique strengths of Hy-Phy is its ability to implement any special case of a general
time reversible model, regardless of the dimensions of the character set. We will devote an entire
chapter to model specification (see 777). To accomplish this feat, we decompose the evolutionary
model into two components: the character frequencies, and the substitution parameters. We
rely on the fact that any special case of the general reversible model can be written in a form
where entries in the substitution matrix are products of substitution parameters and character
frequencies (see 777). In F81.bf we see one of the very simplest model specifications. The line

F81RateMatrix =
{{* ,mu,mu,mu}
{mu,* ,mu,mu}
{mu,mu,* ,mu}
{mu,mu,mu,* }};

in conjuction with a frequency vesctor such as obsFregs, is sufficient to define the F81 model.
Note that the syntax of the matrix definition consists simply of the rows of a matrix. For the
F81 model, the instantaneous rate matrix is traditionally denoted

Chapter2. Basics 2.1: Simple Batch Files

A C G T
A [—p(1 —74) pre PTG P
C 9 —p(l —7c) BTG P
G T A pe —u(l —7¢) prr
T T A pme el —p(1 —7r)

Observe the similarity between this matrix and the Hy-Phy syntax. The Hy-Phy operator
is defined as ”the negative of the sum of all non-diagonal entries on the row”. (Rate matrices
have the property of row elements summing to zero.)

*

Define an evolutionary model

We now combine the results of the two previous steps to obtain a model of sequence evolution:
Model F81 = (F81RateMatrix, obsFreqgs);

The Model statement declares that the rate matrix F81RateMatrixz and the vector obsFreqs will
determine the evolutionary model, which we name F§1.

Define a phylogenetic tree

Hy-Phy uses standard (Newick) tree definitions. Thus, the statement
Tree myTree = (((a,b),c),d);

defines a tree named myTree with four OTUs, or taxa, named a, b, ¢, and d. In this case, the
names correspond to the names in the Hy-Phy batchfile. While this is not necessary, it is strongly
recommended to avoid confusion. Hy-Phy will accept either rooted or unrooted trees; however,
for most purposes rooted trees are automatically unrooted by Hy-Phy because likelihood values
for unrooted trees are the same as those for rooted trees.

The Hy-Phy Tree data structure is much more complex than simply describing a tree topol-
ogy. The Tree variable includes both topology information, as well as evolutionary model infor-
mation. The default behavior of a Tree statement is to attach the most recently defined Model
to all branches in the tree. Thus, it is critical that the Model statement appears before the Tree
statement. We will discuss more advanced uses of the Tree statement later.

Define the likelihood function

The likelihood function for phylogenetic trees depends on the dataset, tree topology, and the
substitution model (and its parameters). To define a likelihood function, we use a statement like

Chapter2. Basics 2.2: Ezercises

LikelihoodFunction theLikFun = (myFilter,myTree) ;

We name the likelihood function theLikFun, and it uses the data in myFilter along with the tree
topology and substitution model stored in in myTree. Recall that the Tree structure myTree
inherited the Model F81 by default.

Maximize the likelihood function

Asking Hy-Phy to maximize the likelihood function is simple:
Optimize (paramValues,theLikFun) ;

finds maximum likelihood estimates of all independent parameters and stores the results in the
matrix param Values, which Hy-Phy creates automatically.

Print the results to the screen and/or a file

The simplest way to print the results of a likelihood maximization step is simply to print the
likelihood function:

fprintf (stdout,thelLikFun) ;

This C-like command prints the structure theLikFun to the default output device stdout (stdout
is typically the screen). The results of this statement are the following:

Log Likelihood = -589.252801936419;
Tree myTree=((a:0.0320567,b:0.00598813)Nodel:0.045548,c:0.0257871,d:0.0769886) ;

When asked to print a likelihood function, Hy-Phy first reports the value of the likelihood
function. It follows with a listing of all estimated parameters. Any parameters associated with
particular branches in a tree are reported in a tree-like description, as shown in the output above.
Each of the branches in the unrooted phylogeny has an associated ”branch length”; branch
lengths are defined as “the expected number of nucleotide substitutions per site”. Those values
appear after the colon following the label for each branch. For example, the estimated branch
length leading to the node ”b” is 0.00598813. Note that the internal node in the tree has been
automatically named “Nodel” by Hy-Phy and its associated branch length is 0.045548.

We will see many examples of this type output in the later examples. Hy-Phy also allows for
more detailed user control of printed output, using a C-like fprintf syntax. The later examples
will illustrate this functionality.

2.2 Exercises

1. Hy-Phy automatically recognizes a variety of file formats, including NEXUS and PHYLIP
variants. To see more clearly what this statement does, create and execute a simple batchfile
with only the following code:

Chapter2. Basics 2.2: Exercises

DataSet myData = ReadDataFile ("../data/demo.seq");
fprintf (stdout,myData) ;

2. Create and execute a batchfile that uses the model of Jukes and Cantor (1969). The JC69
model differs from the F81 model only by imposing the assumption that all nucleotide
frequencies are 0.25.

3. Users will often want to write batch files that are not aware of the name or location of the
data file. One can ask Hy-Phy to prompt for a filename using the following syntax:

SetDialogPrompt ("Please specify a nuleotide data or aminoacid file:");
DataSet myData = ReadDataFile (PROMPT_FOR_FILE);

DataSetFilter filteredData = CreateFilter (myData,l);

Modify basics.bf to prompt the user for the data file.

Chapter3. A Tour of Batch Files

Chapter 3

A Tour of Batch Files

3.1 Defining Substitution Models

Simple Nucleotide Models: modeldefs.bf

One of the primary objectives of Hy-Phy is to free users from relying on the substitution models
chosen by authors of software. While a relatively small set of model choices may be sufficient for
performing phylogenetic analyses, having only a few potential models is often limiting for studies
of substitution rates and patterns. To define a model in Hy-Phy, one needs only to describe the
elements in a substitution rate matrix. If the characters being studied have n states, the rate
matrix is n X n. For example, nucleotide models are 4 x 4; models of amino acid change are 20 x 20;
codon-based models might be 64 x 64. Hy-Phy can work properly with any member of the class
of general time reversible models. Instantaneous rate matrices in this class of models satisfy the
condition m; R;; = m;Rj;, where m; is the equilibrium frequency of character ¢ (for nucleotide data,
) and R;j is the ¢ 41" entry in the instantaneous rate matrix. Hy-Phy comes with many predefined
rate matrices for commonly used substitution models. You can find examples in the batchfiles
under the Ezamples and TemplateBatchFiles directories of the Hy-Phy distribution.

To illustrate the basics of model definition, examine the batch file modeldefs.bf from the
Tutorial directory:

SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile(PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter(myData,l);
HarvestFrequencies(obsFreqs,myFilter,1,1,1);
F81RateMatrix = {{*,m,m,m}{m,*,m,m}{m,m,*,m}{m,m,m,*}};
Model F81 = (F81RateMatrix, obsFreqs);

Tree myTree = ((a,b),c,d);

fprintf (stdout,"\n\n F81 Analysis \n\n");
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,theLikFun) ;

fprintf (stdout,thelLikFun) ;

10

Chapter3. A Tour of Batch Files 3.1: Defining Substitution Models

fprintf (stdout,"\n\n HKY85 Analysis \n\n");
HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFregs);

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,thelLikFun) ;

fprintf (stdout,thelLikFun) ;

This batch file illustrates two new concepts. First, and most importantly, the lines

HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFreqs);

illustrate the definition of a new substitution matrix. In this case, we have defined the model of
Hasegawa, Kishino, and Yano (1985) and named the model HKY85. If you are familiar with the
HKY85 model, you will probably recognize the form of the matrix: transitions occur with rate
a and transversions occur with rate b, with each of those values multiplied by the appropriate
nucleotide frequency. The second important point to note is that we must associate the model
with a tree before we can do anything useful. In this case, we simply redefined the old tree
to use the HKY85 model instead of the F81 model (Recall that a tree consists of both the
topology and the substitution matrices attached to its branches). When the statement Tree
myTree = ((a,b),c,d); is issued, the variable myTree is assigned the topology ((a,b),c,d) and
the branches are assigned the HKY®85 substitution model, which was the most recently defined
Model. If we wanted to preserve the original variable myTree, we could simply have defined a
new Tree structure using a command like Tree myNextTree = ((a,b),c,d);

Finally, for completeness, we created a new Tree and assigned it the F81 model and reproduced
the original F81 analysis. These steps simply illustrate how predefined Models can be assigned
to Trees using the UseModel command.

UseModel (F81) ;

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,thelLikFun) ;

fprintf (stdout,theLikFun) ;

One of the most general models of nucleotide substitution is the general time reversible
model (REV). The instantaneous rate matrix for the REV model is

A C G T

—>. bomc Oimg bomr
boma —>, O3mg Oymr
thma O3mc —>. Osmr
toma Osmc Osmg —)

RRm/:

H Q Q =

It is simple to implement this model in Hy-Phy

11

Chapter3. A Tour of Batch Files 3.1: Defining Substitution Models

REVRateMatrix = {{*,a,b,c}{a,*,d,e}{b,d,*,f}{c,e,f,*x}};
Model REV = (REVRateMatrix, obsFreq);

does the job.

To illustrate these notions in a more usefule context, consider the batchfile models.bf:
SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile(PROMPT_FOR_FILE);

DataSetFilter myFilter = CreateFilter(myData,1);
HarvestFrequencies(obsFregs,myFilter,1,1,1);

equalFreqs = {{0.25}{0.25}{0.25}{0.25}};

myTopology = "((a,b),c,og)";

F81RateMatrix = {{*,m,m,m}{m,*,m,m}{m,m,*,m}{m,m,m,*}};
Model F81 = (F81RateMatrix, obsFreqgs);

HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFreqs);

REVRateMatrix = {{*,a,b,c}{a,*,d,e}{b,d,*,f}{c,e,f,*x}};
Model REV = (REVRateMatrix, obsFregs);

Model JC69 = (F81RateMatrix, equalFreqs);
Model K2P = (HKY85RateMatrix, equalFreqs);

UseModel (JC69) ;

Tree myTree = myTopology;

fprintf (stdout,"\n\n JC69 Analysis \n\n");
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,thelikFun) ;

fprintf (stdout,thelLikFun) ;

UseModel (F81) ;

Tree myTree = myTopology;

fprintf (stdout,"\n\n F81 Analysis \n\n");
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,thelLikFun) ;

fprintf (stdout,thelLikFun) ;

UseModel (K2P) ;

Tree myTree = myTopology;

fprintf (stdout,"\n\n K2P Analysis \n\n");
LikelihoodFunction theLikFun = (myFilter, myTree);

12

Chapter3. A Tour of Batch Files 3.1: Defining Substitution Models

Optimize (results,thelikFun) ;
fprintf (stdout,thelLikFun) ;

UseModel (HKY85) ;

Tree myTree = myTopology;

fprintf (stdout, "\n\n HKY85 Analysis \n\n");
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,thelikFun) ;

fprintf (stdout,thelLikFun) ;

UseModel (REV) ;

Tree myTree = myTopology;

fprintf (stdout,"\n\n REV Analysis \n\n");
LikelihoodFunction thelLikFun = (myFilter, myTree);
Optimize (results,thelLikFun) ;

fprintf (stdout,thelLikFun) ;

If you understand the components of models.bf, then you are ready to define substitution
models, attach them to tree topologies, and find maximum likelihood estimates. models.bf also
demonstrates a few useful Hy-Phy features. First, notice the definition of the simple vector
(0.25,0.25,0.25,0.25). In a similar manner, we define the string constant myTopology. By changing
the topology in the definition of myTopology, the entire analysis can be repeated using the new
topology. This single step is faster than updating the topology for every Tree statement. Finally,
note the reuse of the three substitution matrices and the two frequency vectors. The original
matrix definitions are used as templates by the Model statements.

Global vesus local parameters: localglobal.bf

Interpretation. Because the primary goal of Hy-Phy is to provide flexible modeling of the
nucleotide substitution process, Hy-Phy includes a more general parameterization scheme than
most phylogeny estiamtion programs. Perhaps the most important difference for the user to recog-
nize is the difference between local and global parameters. A local parameter is one that is specific
for a single branch on a tree. In contrast, a global parameter is shared by all branches. To illus-
trate, consider the output generated by the batch file localglobal.bf when run using (demo.seq):

Original HKY85 Analysis
Log Likelihood = -579.03975528721;
Tree myTree=((a{a=0.106343,b=0.024239},b{a=0.000000,b=0.0077423})
Node1{a=0.118759,b=0.041943%},c{a=0.085374,b=0.022151},
og{a=0.246895,b=0.050413}) ;

Local HKY85 Analysis

Log Likelihood = -579.039980005965;
Tree myTree=((a{R=4.350942,b=0.024447},b{R=0.000000,b=0.007724})

13

Chapter3. A Tour of Batch Files 3.1: Defining Substitution Models

Node1{R=2.835357,b=0.041878},c{R=3.828977,b=0.022304},
0og{R=4.876743,b=0.0506271}) ;

Global HKY85 Analysis

Log Likelihood = -579.621469358837;
Shared Parameters:
V=3.772178

Tree myTree=((a{b=0.024878},b{b=0.004718})
Node1{b=0.035926%},c{b=0.020933},
0g{b=0.060754}) ;

In localglobal.bf we have moved beyond the default settings of Hy-Phy, and the details of the
batch file will be discussed below. For now, concentrate on the results. localglobal.bf performs
three analyses of the data in demo.seq, all using the HKY85 model of sequence evolution. The
first, labeled “Original HKY85 Analysis”, is the same analysis that was performed in the previous
example (models.bf). Note that the output format is different. Rather than report the branch
lengths for each branch in the tree, the individual parameter estimates are shown. Note that each
branch has an associated value of a and b. These parameters control the relative frequencies of
transitions and transversions in the HKY85 model. This output reveals that the original analysis
was an example of a local analysis. In the context of this batch file, there was a local value of the
transition-transversion ratio for each branch in the tree.

The second analysis in localglobal.bf repeats the original analysis, but uses a different formula-
tion of the HK'Y85 model (see below). Note that the likelihood values differ only slightly between
the “Original HKY85 Analysis” and the “Local HKY Analysis”. The differences are the results
of approximation error in the numerical optimization process. The parameter lists for the two
analyses are also different. Except for approximation error, the values of b in the two analyses
are the same. On inspection, one notices that the values of a in the first analysis are equal to the
products of b and R in the second analysis. The second analysis is simply a reparametrization of
the first one, making explicit use of the transition-transversion ratio, R.

The third analysis performed in localglobal.bf is an example of a global analysis. In contrast
to the previous two analyses (which you should now understand were really replicates of a single
analysis), the “Global HKY85 Analysis” invokes a global transition-transversion ratio, V. In other
words, all branches share the same value of V. This fact is evident in the output for the “Global
HKY85 Analysis”. Note that the tree list contains only values of b for each branch. The estimated
global value of V' is shown under the heading of Shared Parameters.

The local and global analyses use different numbers of parameters. The local analysis uses a
transition and transversion rate for each of the 5 branches, along with 3 base frequencies, for a
total of 13 parameters. The global analysis includes a transversion rate for each branch, 3 base
frequencies, and a single transition-transversion rate, for a total of 9 parameters. The global
analysis is a special case of the local analysis; therefore, the log-likelihood value for the global
analysis (-579.62) is lower than that of the local anaysis (-579.03). The fact that the addition of
4 parameters results in such a small difference in model fit suggests that the data harbor little
support for the hypothesis that the transition-transversion rate varies among these lineages.

14

Chapter3. A Tour of Batch Files 3.1: Defining Substitution Models

Implementation. The code for localglobal.bf is the following:

OPTIMIZATION_PRECISION=0.0001;
OPTIMIZATION_PRECISION_METHOD=1;

LIKELIHOOD_FUNCTION_QOUTPUT = 4;

SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile(PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter(myData,l);
HarvestFrequencies(obsFreqs,myFilter,1,1,1);

fprintf (stdout,"\n\n Original HKY85 Analysis \n\n");
HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFreqs);

Tree myTree = ((a,b),c,og);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,thelLikFun) ;

fprintf (stdout,theLikFun) ;

fprintf (stdout,"\n\n Local HKY85 Analysis \n\n");
LocalHKY85Matrix = {{*,b,b*R,b}{b,*,b,b*R}{b*R,b,*,b}{b,b*R,b,*}};
Model LocalHKY85 = (LocalHKY85Matrix, obsFreqs);

Tree myTree = ((a,b),c,og);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize (results,thelLikFun) ;

fprintf (stdout,theLikFun) ;

fprintf (stdout,"\n\n Global HKY85 Analysis \n\n");

global V=2.0;

GlobalHKY85Matrix = {{*,b,b*V,b}{b,*,b,b*xV}I{b*V,b,*,b}{b,b*xV,b,*}};
Model GlobalHKY85 (GlobalHKY85Matrix, obsFreqgs);

Tree myTree = ((a,b),c,o0g);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize (results,theLikFun) ;

fprintf (stdout,thelLikFun) ;

The first three lines of the file illustrate the use of three of the many constants that Hy-Phy
uses to tailor its behavior. The first two affect the precision (and speed) of the optimization
process; the third changes the format of the printed likelihood function. (For details, see the
Batch Language Command Reference).

The code for the first analysis is identical to that from models.bf. You will note that the
second analysis uses the same code, with the value of a replaced by R¥b. The substitution
matrix and model have been assigned different names for illustrative purposes. Again, these two
parameterizations are equivalent.

15

Chapter3. A Tour of Batch Files 3.2: More complex models

The global analysis introduces a new statment: global V=2.0; This statement declares V to
be a global variable. By default, the description of a model (and variables within that model) is
used as a template that is copied for every branch on the tree. An important fact is that we can
not simply redefine R as a global variable. The scope of a variable is determined at the time of
its creation and can not be altered. Thus, it was necessary to create the new variable, V.

3.2 More complex models

Hy-Phy has support for an infinite number of substitution models. Any time reversible model
using any finite sequence alphabet can be used. Models for codon and amino acid sequences
are available through the Standard Analyses menu selection. For now, we refer users who are
interested in writing code for such alphabets to the files in the Ezamples subdirectory.

3.3 Imposing constraints on variables

Simple Constraints: relrate.bf

The primary reason for developing Hy-Phy was to provide a system for performing likelihood
analyses on molecular evolutionary data sets. In particular, we wanted to be able to describe
and perform likelihood ratio tests (LRTS) easily. In order to perform an LRT it is first necessary
to describe a constraint, or series of constraints, among parameters in the probability model. To
illustrate the syntax of parameter constraints in Hy-Phy, examine the code in relrate.bf:

SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter (myData,1);
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
F81RateMatrix =

{{* ,mu,mu,mu}

{mu,* ,mu,mu}

{mu,mu,* ,mu}

{mu,mu,mu,* }};
Model F81 = (F81RateMatrix, obsFregs);
Tree myTree = (a,b,og);

fprintf (stdout,"\n Unconstrained analysis:\n\n");
LikelihoodFunction theLikFun = (myFilter, myTree, obsFreqs);
Optimize (paramValues, theLikFun);

fprintf (stdout, theLikFun);

fprintf (stdout,"\n\n\n Constrained analysis:\n\n");
myTree.a.mu := myTree.b.mu;

Optimize (paramValues, theLikFun);

fprintf (stdout, theLikFun);

16

Chapter3. A Tour of Batch Files 3.4: Molecular Clocks

3.4 Molecular Clocks

Perhaps the most common hypothesis tested using molecular data is that a sequence has evolved
according to a molecular clock. It now seems quite clear that a global molecular clock exists
for few, if any, gene sequences. In contrast, the existence of local molecular clocks among more
closely related species is more probable. Hy-Phy allows for both types of constraints, including
the possibility of testing for multiple local clocks for different user-defined clades in the same tree.

Global clocks: molclock.bf

The batch file molclock.bf is a simple example of testing for a global molecular clock. The code
should be familiar, except for the new MolecularClock statement, which declares that the values
of the parameter mu should follow a molecular clock on the entire tree myTree. An important
difference in this batch file is that the Topology statement defines a rooted tree. Had an unrooted
tree been used, it would be treated as a rooted tree with a multifurcation at the root.

SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter(myData,1);
HarvestFrequencies(obsFreqgs,myFilter,1,1,1);

equalFreqs = {{0.25}{0.25}{0.25}{0.25}};

myTopology = "(((a,b),c),og)"; /* Note: need a rooted tree! */

F81RateMatrix = {{*,m,m,m}{m,*,m,m}{m,m,*,m}{m,m,m,*}};
Model F81 = (F81RateMatrix, obsFreqgs);

fprintf (stdout,"\n\n Unconstrained Analysis: \n");
Tree myTree = myTopology;

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,thelikFun) ;

fprintf (stdout,thelLikFun) ;

unconstrainedlnlLik = results[1][0];

numparUn = results[1][1];

fprintf (stdout,"\n\n Molecular Clock Analysis: \n");
MolecularClock(myTree,m) ;

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,thelLikFun) ;

fprintf (stdout,thelLikFun) ;

constrainedlnlLik = results[1][0];

numparCon = results[1][1];

InlikDelta = 2 (unconstrainedlLnlLik-constrainedLnLik) ;

17

Chapter3. A Tour of Batch Files 3.4: Molecular Clocks

pValue = 1-CChi2 (InlikDelta, numparUn - numparCon) ;

fprintf (stdout, "\n\n P-value for Global Molecular Clock Test:", pValue, "\n");

The output of this analysis reveals a likelihood value of -589.2528 without a clock, and a value
of -593.0986 when a clock is imposed. You also see that code has been added to compute the
likelihood ratio test of the clock hypothesis, including the calculation of the P-value (0.021) based
on the chi-squared approximation for the likelihood ratio test statistic. These calculations make
use of the Hy-Phy command CChi2 (see the Batch Language Command Reference).

Local clocks: localclocks.bf

Particularly when studying data sets consisting of many species spanning a wide level of taxonomic
diversity, it may be of interest to assign local molecular clocks to some clades. For instance,
in a study of mammalian molecular evolution one might specify that each genus evolves in a
clocklike manner, but that different genera evolve at different rates. To allow such analyses, the
MolecularClock command can be applied to any node on a tree. Unlike the global clock of the
previous case, it is not necessary for the MolecularClock command to be applied to a rooted tree;
the placement of the MolecularClock command ”roots” the tree, at least locally. To illustrate this
feature, we use localclocks.bf. Instead of the data file demo.seq we use the larger file largedemo.seq.
The relevant new sections of the code are the tree topology definition:

myTopology = "(((a,b)nl,(c,(d,e))n2),f)";
and the declaration of two local molecular clocks:

fprintf (stdout,"\n\n Local Molecular Clock Analysis: \n");
ClearConstraints (myTree) ;

MolecularClock(myTree.nl,m);

MolecularClock(myTree.n2,m) ;

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (results,theLikFun) ;

The topology string used in localclocks.bf takes advantage of Hy-Phy's extended syntax.
Notice how we have named two of the internal nodes n1 and n2. Those names override Hy-
Phy’s default (and rather cryptic) node naming convention and allow for us to call functions—in
this case, MolecularClock— on the clades they tag. The syntax of the MolecularClock statements
is rather C-like. MolecularClock(myTree.nl,m); imposes a local clock on the clade below node
nl in tree myTree. The parameter with clocklike behavior is m, the only option for the F81 model
being used. By examining the output you notice that the two subtrees do, indeed, have clocklike
branch lengths, yet, the tree as a whole is not clocklike. The likelihood ratio test suggests that
the local clocks are not present.

18

Chapter4. Simulation Tools

Chapter 4

Simulation Tools

The use of simulation in molecular evolutionary analysis has always been important. As comput-
ing speed has increased, the role of simulation-based procedures has become even more prominent.
Simulation allows us to test statistical properties of methods, to assess the validity of theoretical
asymptotic distributions of statistics, and to study the robustness of procedures to underlying
model assumptions. More recently, methods invoking simulation have seen increased use. These
techniques include numerical resampling methods for estimating variances or for computing con-
fidence intervals, and also the parametric bootstrap procedures for estimating p-values of test
statistics. Hy-Phy provides both parametric and nonparametric simulation tools, and examples
of both are illustrated in the following sections.

4.1 The Bootstrap: bootstrap.bf

The bootsrap provides, among other things, a simple nonparametric approach for estimating
variances of parameter estimates. Consider bootstrap.bf. The relevant commands from the batch
file are (note that some lines creating output have been deleted for clarity):

LikelihoodFunction theLikFun = (myFilter, myTree, obsFreqgs);
Optimize (paramValues, theLikFun);
fprintf (stdout, theLikFun);

reps = 10;
Tree bsTree = (a,b,o0g);

for (simCounter = 1; simCounter<=reps; simCounter = simCounter+1)
{
DataSetFilter simFilter = Bootstrap(myFilter,1);
HarvestFrequencies (simFreqs, simFilter, 1, 1, 1);
LikelihoodFunction simLik = (simFilter, bsTree, simFregs);
Optimize (simParamValues, simLik);

19

Chapter4. Simulation Tools 4.2: The Parametric Bootstrap: parboot.bf

The first section of code is simply the completion of a typical data analysis, storing and
printing results from the analysis of data in myFilter. We then create a variable containing the
desired number of bootstrap replicates and a copy of the structure myTree for use in the bootstrap
replicates. (The latter is not necessary, but because the original structure will often be reused
after bootstrap replicates are generated, it is a good programming habit to develop.)

The for loop is the meat of the batch file. For each of the reps replicates, we generate
a new DataSetFilter named simFilter. We do this by creating a bootstrap replicate from the
existing DataSetFilter named mykFilter, which was created in the normal fashion. simFilter will
contain the same number of columns as myFilter. Once the new filter has been created, we use
it in an appropriate LikelihoodFunction command and find MLEs of the parameters. Notice in
the complete batch file (not shown in the code above) how we use the matrix variable BSRes
to tabulate and report the average of all bootstrap replicates. More complex analyses can be
programmed with relative ease, or the bootstrap replicates can be saved and imported into a
spreadsheet for statistical analyses.

The Permute function, with syntax identical to Bootstrap, exists for applications where the
columns in the existing DataSetFilter must appear exactly once in each of the simulated datasets.
This feature may be useful for comparisons between the three codon positions or for studies
investigating spatial correlations or spatial heterogeneity.

4.2 The Parametric Bootstrap: parboot.bf

Another useful simulation tool is the parametric bootstrap. Hy-Phy provides the Simulate-
DataSet command to provide the type of model-based simulation required. In parboot.bf we find
the following lines of code. Again, some lines have been deleted for clarity.

for (simCounter = 1; simCounter<=reps; simCounter = simCounter+1)
{
DataSet simData = SimulateDataSet(theLikFun) ;
DataSetFilter simFilter = CreateFilter (simData,1);
HarvestFrequencies (simFreqs, simFilter, 1, 1, 1);
LikelihoodFunction simLik = (simFilter, bsTree, simFreqs);
Optimize (simParamValues, simLik);

The end result is analagous to that of bootstrap.bf: we simulate reps datasets, find MLEs,
and tabulate results. The fundamental difference is that the datasets are formed by simulating
using the tree structure, evolutionary model, and parameters in theLikFun via the function Sim-
ulateDataSet. An important technical difference is that SimulateDataSet generates a DataSet as
opposed to the DataSetFilter created by Bootstrap. Thus, we must use the CreateFilter command
to create an appropriate filter.

Again note the use of BSRes for tabulating results, and also the use of fscanf for acquiring
input from the user (see the Batch Language Command Reference for details).

20

Chapter5. Putting It All Together: positions.bf

Chapter 5

Putting It All Together: positions.bf

As an example of the type of analysis Hy-Phy was designed to implement, we now describe the
batchfile positions.bf. This file illustrates some of the features of the CreateFilter command by
ignoring species C' and by creating separate filters for each of the three codon positions. The
HKY85 model is used as the basic substitution model. First, the entire data set is analyzed in
the normal way, treating all sites in the same way. A second LikelihoodFunction is then created,
which splits the data according to codon position. Each of the three partitions is allowed to
evolve with a separate rate. However, the transition/transversion ratio is constrained to be the
same for all three codon positions as well as for all lineages. The likelihood ratio test statistic
comparing these two models is computed, and the statistical significance of the test is reported
using both the chi-squared approximation and nonparametric bootstrapping.

The file positions.bf is rather complicated, so we will focus only on some of its key features.

Using “combs” when filtering data.

It is often the case that molecular data sets have some repeating underlying structure that we
would like to exploit or study. For instance, coding regions might be described with the repeating
structure 123123123 In positions.bf we create separate DataSetFilters for first, second, and
third codon positions. The command:

DataSetFilter myFilterl = CreateFilter (myData,l,"<100>","0,1,3");

creates a DataSetFilter named MyDatal that includes only the first nucleotide of every triplet.
Likewise, the statement

DataSetFilter myFilter3 = CreateFilter (myData,l,"<001>","0,1,3");
creates a DataSetFilter named MyData3 that includes only the third nucleotide of every triplet.
Had we wished to create a filter consisting of both first and second positions, we would have used

a statement like

DataSetFilter myFilter12 = CreateFilter (myData,1,"<110>","0,1,3");

21

Chapter5. Putting It All Together: positions.bf

Define a substitution model for each position.

The next portion of positions.bf creates a vector of observed frequencies for each of the filters
using standard syntax.

Next, the basic substitution model is defined. We use the HKY85 model, with trnasversion
parameter b and global transition/transversion ratio R. A separate Model is created for each
partition, since they each use different frequencies:

global R;

HKY85RateMatrix = {{*,b,R*b,b}{b,*,b,R¥b}{R*b,b,*,b}{b,R*b,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFreqs);

Tree myTree = (a,b,o0g);

Model HKY851 = (HKY85RateMatrix, obsFreqsl);

Tree myTreel = (a,b,o0g);

Model HKY852 (HKY85RateMatrix, obsFreqgs2);

Tree myTree2 = (a,b,og);

Model HKY853 (HKY85RateMatrix, obsFreqs3);

Tree myTree3 = (a,b,o0g);

Define two likelihood functions

We are now ready to set up LikelihoodFunctions and Optimize them. The analysis of the combined
data set is routine:

LikelihoodFunction theLikFun = (myFilter,myTree);
Optimize (paramValues, theLikFun);

We also store some results for later use:

1nLik0 = paramValues[1][0];
npar0 = paramValues[1] [1]+3;
fprintf (stdout, theLikFun, "\n\n");

The statement npar0 = paramValues[1] [1]+3; requires some explanation. The Optimize func-
tion always returns the number of parameters that were optimized as the [1] [1] element of its
returned matrix of results. Typically, we do not optimize over base frequency values, electing
instead to simply use observed frequencies, which are usually very close to the maximum like-
lihood estimates. Since the frequencies are, in fact, estimated from the data, they need to be
included in the parameter count. The value of npar0, therefore, includes the count of independent
substitution parameters in the model (the number of which is returned by Optimize) along with
the three independent base frequencies estimated from the data.

The LikelihoodFunction for the “partitioned” analysis simply uses the extended form of the
LikelithoodFunction command:

22

Chapter5. Putting It All Together: positions.bf

LikelihoodFunction theSplitLikFun = (myFilterl,myTreel,
myFilter2,myTree2,
myFilter3,myTree3);

Optimize (paramValues, theSplitLikFun);

1nlLikl = paramValues[1] [0];

nparl = paramValues[1] [1]+9;

Note the addition of the 9 estimated frequencies to the model’s parameter count.

Finally, we compute the P-value for the test of the combined analysis (null hypothesis) against
the split model (alternative hypothesis). Two approaches are used. First, the normal chi-squared
approximation to the LRT statistic:

LRT = 2*%(1nLik1-1nLik0);
pValueChi2 = 1-CChi2 (LRT, nparl-nparO).

Estimate the P-value via parametric bootstrapping

One can also estimate the P-value using the parametric bootstrap. The statement for simulating
a random dataset based on theLikFun is

DataSet simData = SimulateDataSet(theLikFun);

The remaining part of the loop is basically a copy of the original analysis, with variable names
adjusted to indicate that they are coming from simulated data. For each simulated dataset we
compute the LRT, named simLRT, and compare it to the observed LRT. The estimate of the
P-value is the proportion of simulated datasets with a LRT larger than that of the observed data.
We simply keep track of the number of such events using the variable count:

simLRT = 2% (simlnLik1l-simlnLikO0) ;
if (simLRT > LRT)
{

count = count+1;

and report the results:
fprintf (stdout,"\n\n*** P-value (Parametric BS)= ",count/reps,"\n");

positions.bf provides a good example of the flexibility of Hy-Phy, and many of the same ideas
could be used to develop analyses of multiple genes. Of particular importance for multilocus is
the ability to mix local and global variables.

23

Chapter5. Putting It All Together: positions.bf 5.1: Ezercises

5.1 Exercises

1. Modify positions.bf so that the transition/transversion ratio is different from lineage to
lineage, but equal among codon positions (ie, all branches leading to species A have the
same ts/tv ratio, regardless of the codon position, but that ratio can differ from the ratio
for branches leading to species B).

2. Modify positions.bf so that (i) all four species in demo.seq are analyzed, and (ii) first and
second codon positions are combined into a single partition.

24

