Fisicoquímica A Primer del módulo II 1ra fecha-28/10/09

Problema 1 (2puntos)

- a) Use los datos dados para determinar K_P para la reacción $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$ a 298K y a 500K. Asuma comportamiento ideal y desprecie la variación de ΔH^0 con la temperatura. $\Delta G_{f,298}^0(PCl_3) = -287,0kcal/mol$, $\Delta G_{f,298}^0(PCl_5) = -374,9kcal/mol$.
- b) Calcule las fracciones molares en equilibrio para todas las especies si se comienza con PCl_5 puro a una presión de 1bar.

Problema 2 (2 puntos)

- a) El punto de ebullición normal del dietil eter es 34.5° C y su $\Delta H_{\rm vap}$ =6.38kcal/mol. Encuentre la presión de vapor del eter a 25° C. Explicite todas las aproximaciones necesarias para hacer el cálculo.
- b) Considere un sistema compuesto por agua y alcohol en equilibrio con sus vapores. ¿Cuántos grados de libertad tiene el sistema? Indique al menos dos conjuntos de variables que se correspondan con esos grados de libertad.

Problema 3 (2 puntos)

- a) Cuando 1,0g de urea (CO(NH₂)₂) son disueltos en 200g de un solvente A, el punto de congelación de A desciende en 0,250°C. Cuando 1,50g de un noelectrolito Y son disueltos en el mismo solvente, el punto de congelación de A desciende por 0,20g. Encuentre el peso molecular de Y.
- b) La presión de vapor de agua pura a 110°C es 1074,6 torr. Encuentre la presión de vapor a 110°C es una solución 2,0% p/p de sacarosa (C₁₂H₂₂O₁₁) en agua.

Problema 4 (2 puntos)

- a) Usando los datos dados, calcule ΔG^0 y K a 298K para la reacción $Cl_2(g) + 2 Br^*(aq) \rightarrow 2Cl^*(aq) + Br_2(l)$.
- b) Encuentre el valor que tiene que tener el cociente arbitrario de reacción para que la celda Pt \mid H₂(g) \mid HCl(aq) \mid AgCl(s) \mid Ag(s) \mid Pt tenga una fem de -1.0V a 25°C.

Datos:
$$\xi_{Cl_7/Cl^-}^0 = 1{,}360V; \xi_{Br_2/Br^-}^0 = 1{,}078V; \xi_{Ag/ClAg}^0 = 0.222V$$

Problema 5 (2 puntos)

Indique cuáles de las siguientes acciones puede alterar la constante de equilibrio de una reacción en solución: a) eliminar de un producto; b) cambiar la temperatura; c) cambiar el solvente; d) agregar un catalizador.